answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elden [556K]
2 years ago
10

before colliding, the momentum of block A is +15.0 kg m/s. after, block A has a momentum -12.0 kg*m/s. what is the momentum of b

lock B afterwards
Physics
1 answer:
Helen [10]2 years ago
3 0

Answer:

The momentum of block B = 27 Kg m/s

Explanation:

Given,

The initial momentum of block A, MU = 15 Kg m/s

The final momentum of block A, MV = -12 Kg m/s

Consider the block B is initially at rest.

Therefore, the initial momentum of block B, mu = 0

According to the laws of conservation of linear momentum, the momentum of the body before impact is equal to the momentum of the body after impact.

                               <em> MU + mu = MV + mv</em>

                                15  +  (0) = (-12) + mv

                                         mv = 15 + 12

                                              =  27 Kg m/s

Hence, the momentum of the block B after impact is, mv = 27 Kg m/s

You might be interested in
A densly wound cylindrical coil has 210 turns per meter, a 5 cm radius, and carries 38 mA. What is the magnitude of the uniform
kaheart [24]

Answer:

(a). The magnitude of the uniform magnetic field is 10.02 μT

(b). The the magnitude of the total magnetic field is 10.78 μT.

Explanation:

Given that,

Number of turns = 210

Radius = 5 cm

Current = 38 mA

Current in the wire = 500 mA

We need to calculate the magnetic field inside a coil

Using formula of magnetic field

B=\mu_{0} ni

Put the value into the formula

B_{c}=4\pi\times10^{-7}\times210\times38\times10^{-3}

B_{c}=0.0000100\ T

B_{c}=10.02\times10^{-6}\ T

Now a straight wire is inserted into the coil that carries 500 mA. It travels down the central axis of the coil

Distance d=\dfrac{5}{2}

d=2.5\ cm

We need to calculate the magnetic field from the straight wire

Using formula of magnetic field

B_{w}=\dfrac{\mu_{0}I}{2\pi d}

Put the value into the formula

B_{w}=\dfrac{4\pi\times10^{-7}\times500\times10^{-3}}{2\times\pi\times2.5\times10^{-2}}

B_{w}=4.0\times10^{-6}\ T

This field is perpendicular to the wire.

The magnitude of magnetic field is

B=\sqrt{B_{c}^2+B_{w}^2}

B=\sqrt{(10.02\times10^{-6})^2+(4.0\times10^{-6})^2}

B=0.00001078\ T

B=10.78\times10^{-6}\ T

B=10.78\ \mu\ T

Hence, (a). The magnitude of the uniform magnetic field is 10.02 μT

(b). The the magnitude of the total magnetic field is 10.78 μT.

6 0
2 years ago
The angle θ is slowly increased. Write an expression for the angle at which the block begins to move in terms of μs.
Reika [66]

Answer:

tan \theta = \mu_s

Explanation:

An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:

mg sin \theta - \mu_s R =0 (1)

where

mg sin \theta is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity, \theta the angle of the slope

\mu_s R is the frictional force, with \mu_s being the coefficient of friction and R the normal reaction of the incline

The equation of the forces along the direction perpendicular to the slope is

R-mg cos \theta = 0

where

R is the normal reaction

mg cos \theta is the component of the weight perpendicular to the slope

Solving for R,

R=mg cos \theta

And substituting into (1)

mg sin \theta - \mu_s mg cos \theta = 0

Re-arranging the equation,

sin \theta = \mu_s cos \theta\\\rightarrow tan \theta = \mu_s

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of \mu_s, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.

4 0
2 years ago
Assume that the mass has been moving along its circular path for some time. You start timing its motion with a stopwatch when it
lesya692 [45]

Answer:

v = R\omega(-sin\omega t \hat i + cos\omega t \hat j)

Explanation:

As we know that the mass is revolving with constant angular speed in the circle of radius R

So we will have

\theta = \omega t

now the position vector at a given time is

r = Rcos\theta \hat i + R sin\theta \hat j

now the linear velocity is given as

v = \frac{dr}{dt}

v = (-R sin\theta \hat i + R cos\theta \hat j)\frac{d\theta}{dt}

v = R\omega(-sin\omega t \hat i + cos\omega t \hat j)

6 0
2 years ago
You are given two rectangular blocks of shiny metal, Block A and Block B, and are asked to determine which one will float in a b
vladimir2022 [97]

Answer:

Explanation:

Volume of block A = 10 x 6 x 1 = 60 cm³

Mass of block A = 630 g

density of mass A = mass / density

= 630 / 60 = 10.5g / cm³

Volume of block B = 5 x 5 x 3 = 75 cm³

Mass of block A = 604 g

density of mass A = mass / density

= 604 / 75 = 8.05 g / cm³

Since density of both A and B are less than that of mercury , both will float in mercury.

7 0
2 years ago
A wave is propagating from left to right in a medium. The particles in the medium are also vibrating from left to right. What ki
Anna71 [15]
Based on the direction of propagation compared to direction of vibration, waves are classified into:
1- Transverse waves: The direction of propagation of the wave is perpendicular to the direction of vibration of the medium particles.
2- Longitudinal waves: The direction of propagation of the wave is the same as the direction of vibration of the medium particles.

For the question we have here, since the direction of the wave is the same as the direction of vibration of particles, therefore, this wave is a longitudinal wave
6 0
2 years ago
Other questions:
  • Blue light, which has a wavelength of about 475 nm, is made to pass through a slit of a diffraction grating that has 425 lines p
    12·2 answers
  • While looking at bromine (Br) on the periodic table, a student needs to find another element with very similar chemical properti
    13·2 answers
  • What is the factor involved in increasing an object’s inertia?
    14·1 answer
  • Sandy is on a road trip. She leaves at 8:00 AM. It takes her 2 hours to drive 200 kilometers. She stops at a rest stop for half
    9·1 answer
  • By examining a wave's pattern after it interacts with a barrier or gap, measurements can be made to better understand certain wa
    15·2 answers
  • A block is suspended from a scale and then lowered into a bucket of water. The density of the water is 1 gm/cm3. The initial rea
    7·1 answer
  • In the vertical jump, an Kobe Bryant starts from a crouch and jumps upward to reach as high as possible. Even the best athletes
    10·1 answer
  • You set a tuning fork into vibration at a frequency of 723 Hz and then drop it off the roof of the Physics building where the ac
    5·1 answer
  • En la Tierra, una balanza muestra que tu peso es 585 N.
    6·1 answer
  • ; (b) A uniform beam 150cm long weighs 3.5kg and
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!