answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex777 [14]
2 years ago
12

A small town has decided to forego the use of electrical power and send energy through town via mechanical waves on ropes. They

use rope with a mass per length of 1.50 kg/m under 6000 N tension. If they are limited to a wave amplitude of 0.500 m, what must be the frequency of waves necessary to transmit power at the average rate of 2.00 kW
Physics
1 answer:
mojhsa [17]2 years ago
3 0

Answer:

the required frequency of waves is 2.066 Hz

Explanation:

Given the data in the question;

μ = 1.50 kg/m

T = 6000 N

Amplitude A = 0.500 m

P = 2.00 kW = 2000 W

we know that, the average power transmit through the rope can be expressed as;

p = \frac{1}{2}vμω²A²

p = \frac{1}{2}√(T/μ)μω²A²

so we solve for ω

ω² = 2P / √(T/μ)μA²

we substitute

ω² = 2(2000) / √(6000/1.5)(1.5)(0.500)²

ω² = 4000 / 23.71708

ω² = 168.65

(2πf)² = ω²

so

(2πf)² = 168.65

4π²f² = 168.65

f² = 168.65 / 4π²

f² = 4.27195

f = √4.27195

f = 2.066 Hz

Therefore, the required frequency of waves is 2.066 Hz

You might be interested in
Block A, mass 250 g , sits on top of block B, mass 2.0 kg . The coefficients of static and kinetic friction between blocks A and
masha68 [24]

Answer:

  F = 69.3 N

Explanation:

For this exercise we use Newton's second law, remembering that the static friction force increases up to a maximum value given by

               fr = μ N

We define a reference system parallel to the floor

block B  ( lower)

Y axis  

            N - W₁-W₂ = 0

            N = W₂ + W₂

            N = (M + m) g

X axis

              F -fr = M a

for block A (upper)

X axis

              fr = m a                 (2)

so that the blocks do not slide, the acceleration in both must be the same.

Let's solve the system by adding the two equations

             F = (M + m) a          (3)

             a =\frac{F}{ M+m}

the friction force has the formula

            fr = μ N

             fr = μ (M + m) g

let's calculate

            fr = 0.34 (2.0 + 0.250) 9.8

            fr = 7.7 N

we substitute in equation 2

             fr = m a

             a = fr / m

             a = 7.7 / 0.250

             a = 30.8 m / s²

we substitute in equation 3

             F = (2.0 + 0.250) 30.8

             F = 69.3 N

5 0
2 years ago
Consider a father pushing a child on a playground merry-go-round. the system has a moment of inertia of 84.4 kg · m2. the father
-Dominant- [34]
<span>At time t1 = 0 since the body is at rest, the body has an angular velocity, v1, of 0. At time t = X, the body has an angular velocity of 1.43rad/s2. Since Angular acceleration is just the difference in angular speed by time. We have 4.44 = v2 -v1/t2 -t1 where V and t are angular velocity and time. So we have 4.44 = 1.43 -0/X - 0. Hence X = 1.43/4.44 = 0.33s.</span>
6 0
2 years ago
Read 2 more answers
two students are on a balcony 19.6 m above the street. one student throws a ball vertically downward at 14.7 m:ds. at the same i
NARA [144]

A. The difference in the two ball's time in the air is 3 seconds

B. The velocity of each ball as it strikes the ground is 24.5 m/s

C. The balls 0.500 s after they are thrown are 14.7 m apart

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration ( m/s² )</em>

<em>v = final velocity ( m/s )</em>

<em>u = initial velocity ( m/s )</em>

<em>t = time taken ( s )</em>

<em>d = distance ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Initial Height = H = 19.6 m

Initial Velocity = u = 14.7 m/s

<u>Unknown:</u>

A. Δt = ?

B. v = ?

C. Δh = ?

<u>Solution:</u>

<h2>Question A:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

0 = 19.6 - 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 - 14.7t - 4.9t^2

4.9t^2 + 14.7t - 19.6 = 0

t^2 + 3t - 4 = 0

(t + 4)(t - 1) = 0

(t - 1) = 0

\boxed {t = 1 ~ second}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

0 = 19.6 + 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 + 14.7t - 4.9t^2

4.9t^2 - 14.7t - 19.6 = 0

t^2 - 3t - 4 = 0

(t - 4)(t + 1) = 0

(t - 4) = 0

\boxed {t = 4 ~ seconds}

The difference in the two ball's time in the air is:

\Delta t = 4 ~ seconds - 1 ~ second

\large {\boxed {\Delta t = 3 ~ seconds} }

<h2>Question B:</h2><h3>First Ball</h3>

v^2 = u^2 - 2gH

v^2 = (-14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

<h3>Second Ball</h3>

v^2 = u^2 - 2gH

v^2 = (14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

The velocity of each ball as it strikes the ground is 24.5 m/s

<h2>Question C:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

h = 19.6 - 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 11.025 ~ m}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

h = 19.6 + 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 25.725 ~ m}

The difference in the two ball's height after 0.500 s is:

\Delta h = 25.725 ~ m - 11.025 ~ m

\large {\boxed {\Delta h = 14.7 ~ m} }

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle

6 0
2 years ago
A 2.0-cm-diameter parallel-plate capacitor with a spacing of 0.50 mm is charged to 200 V. What are (a) the total energy stored i
Debora [2.8K]

Answer:

(A) Total energy will be equal to 0.044\times 10^{-5}J

(b) Energy density will be equal to 0.0175J/m^3

Explanation:

We have given diameter of the plate d = 2 cm = 0.02 m

So area of the plate A=\pi r^2=3.14\times 0.02^2=0.001256m^2

Distance between the plates d = 0.50 mm = 0.50\times 10^{-3}m

Permitivity of free space \epsilon _0=8.85\times 10^{-12}F/m

Potential difference V =200 volt

Capacitance between the plate is equal to C=\frac{\epsilon _0A}{d}=\frac{8.85\times 10^{-12}\times 0.001256}{0.50\times 10^{-3}}=0.022\times 10^{-9}F

(a) Total energy stored in the capacitor is equal to

E=\frac{1}{2}CV^2

E=\frac{1}{2}\times 0.022\times 10^{-9}\times 200^2=0.044\times 10^{-5}J

(b) Volume will be equal to V=Ad, here A is area and d is distance between plates

V=0.001256\times 0.02=2.512\times 10^{-5}m^3

So energy density =\frac{Energy}{volume}=\frac{0.044\times 10^{-5}}{2.512\times 10^{-5}}=0.0175J/m^3

7 0
2 years ago
A yo-yo is made from two uniform disks, each with mass m and radius R, connected by a light axle of radius b. A light, thin stri
schepotkina [342]

Answer:

linear acceleration

a = \frac{2g}{2 + \frac{R}{b}}

angular acceleration

\alpha = \frac{2g}{R(2 + \frac{R}{b})}

Explanation:

As we know that the force due to tension force is upwards while weight of the disc is downwards

so we will have

2mg - T = 2ma

also we have

Tb = (\frac{1}{2}mR^2 + \frac{1}{2}mR^2)\alpha

now we have

Tb = mR^2(\frac{a}{R})

T = \frac{mRa}{b}

now we have

2mg = (2ma + \frac{mRa}{b})

a(2 + \frac{R}{b}) = 2g

so we have

linear acceleration

a = \frac{2g}{2 + \frac{R}{b}}

angular acceleration

\alpha = \frac{2g}{R(2 + \frac{R}{b})}

4 0
2 years ago
Other questions:
  • The heat capacity of an object depends in part on its ____.
    6·1 answer
  • Assuming the same current is running through two separate coils, why is it easier to thrust a magnet into a wire coil with one l
    6·2 answers
  • The eiffel tower has a mass of 7.3 million kilograms and a height of 324 meters. its base is square with a side length of 125 me
    7·1 answer
  • Which statements describe the book and the forces acting on it? Check all that apply. The forces are balanced. The forces are un
    5·2 answers
  • A highly charged piece of metal (with uniform potential throughout) tends to spark at places where the radius of curvature is sm
    12·1 answer
  • Satellite A A orbits a planet at a distance d d from the planet’s center with a centripetal acceleration a0 a 0 . A second ident
    10·1 answer
  • Cylinder A is moving downward with a velocity of 3 m/s when the brake is suddenly applied to the drum. Knowing that the cylinder
    14·1 answer
  • What is the first velocity of the car with four washers at
    5·2 answers
  • Consider two circular metal wire loops each carrying the same current I as shown below. In what r... Consider two circular metal
    6·1 answer
  • The Bohr model pictures a hydrogen atom in its ground state as a proton and an electron separated by the distance a0 = 0.529 × 1
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!