answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrrafil [7]
2 years ago
8

Which energy source is formed when organic matter is trapped underground without exposure to air or moisture?. . A. natural gas.

B. coal. C. oil. D. biomass fuels
Physics
1 answer:
nikklg [1K]2 years ago
8 0

Answer:

The correct answer is option B. coal

Explanation:

Coal is made of remains of organic material including trees and other vegetation which got trapped beneath the earth’s surface or at the bottom of the swamps. After burial below the ground the organic material was acted upon by the high temperature and pressure in the absence of air to form peat. Peat after further processing for a longer period of time converted into coal

You might be interested in
A beam of unpolarized light with intensity I0 falls first upon a polarizer with transmission axis θTA,1 then upon a second polar
loris [4]

Answer:

The intensity I₂ of the light beam emerging from the second polarizer is zero.

Explanation:

Given:

Intensity of first polarizer = Io/2

For the second polarizer, the intensity is equal:

I_{2} =\frac{I_{o} }{2} (cos\theta )^{2} =\frac{I_{o} }{2} (cos90)^{2} =0

5 0
2 years ago
The Earth’s internal __________ source provides the energy for our dynamic planet, providing it with the driving force for on-go
jeka94
Heat source is the answer
7 0
2 years ago
Read 2 more answers
A tennis player standing 12.6m from the net hits the ball at 3.00 degrees above the horizontal. To clear the net, the ball must
mezya [45]
We actually don't need to know how far he/she is standing from the net, as we know that the ball reaches its maximum height (vertex) at the net. At the vertex, it's vertical velocity is 0, since it has stopped moving up and is about to come back down, and its displacement is 0.33m. So we use v² = u² + 2as (neat trick I discovered just then for typing the squared sign: hold down alt and type 0178 on ur numpad wtih numlock on!!!) ANYWAY....... We apply v² = u² + 2as in the y direction only. Ignore x direction. 
IN Y DIRECTION: v² = u² + 2as 0 = u² - 2gh u = √(2gh) (Sub in values at the very end) 
So that will be the velocity in the y direction only. But we're given the angle at which the ball is hit (3° to the horizontal). So to find the velocity (sum of the velocity in x and y direction on impact) we can use: sin 3° = opposite/hypotenuse = (velocity in y direction only) / (velocity) So rearranging, velocity = (velocity in y direction only) / sin 3° = √(2gh)/sin 3° = (√(2 x 9.8 x 0.33)) / sin 3° = 49 m/s at 3° to the horizontal (2 sig figs)
4 0
2 years ago
Read 2 more answers
A particle in the first excited state of a one-dimensional infinite potential energy well (with U = 0 inside the well) has an en
nataly862011 [7]

Answer:

The energy of this particle in the ground state is E₁=1.5 eV.

Explanation:

The energy E_{n} of a particle of mass <em>m</em> in the <em>n</em>th energy state of an infinite square well potential with width <em>L </em>is:

                                                    E_{n}=\frac{n^{2}h^{2}}{8mL^{2}}

In the ground state (n=1). In the first excited state (n=2) we are told the energy is E₂= 6.0 eV. If we replace in the above equation we get that:

                                                    E_{1}=\frac{h^{2}}{8mL^{2}}            

                                                    E_{2}=\frac{h^{2}}{2mL^{2}}

So we can rewrite the energy in the ground state as:

                                                   E_{1}=\frac{1}{4}(\frac{h^{2}}{2mL^{2}})

                                                      E_{1}=\frac{1}{4} E_{2}

                                                   E_{1}=\frac{1}{4} ( 6.0\ eV)

Finally

                                                    E_{1}=1.5\ eV

                                                   

                                                   

6 0
2 years ago
A sailboat starts from rest and accelerates at a rate of 0.21 m/s^2 over a distance of 280 m. find the magnitude of the boat's f
sasho [114]

We use the kinematic equations,

v=u+at                                          (A)

S= ut + \frac{1}{2} at^2                  (B)

Here, u is initial velocity, v is final velocity, a is acceleration and t is time.

Given,  u=0, a=0.21 \ m/s^2 and s= 280 m.

Substituting these values in equation (B), we get

280 \ m = 0 +\frac{1}{2} (0.21 m/s^2) t^2 \\\\ t^2 = \frac{280 \times 2}{0.21 } \\\\ t= 51.63 \ s.

Therefore from equation (A),

v = 0 + (0.21) \times (51.63 s)= 10.84 \ m/s

Thus, the magnitude of the boat's final velocity is 10.84 m/s and the time taken by boat to travel the distance 280 m is 51.63 s



8 0
2 years ago
Other questions:
  • A typical human contains 5.00 l of blood, and it takes 1.00 min for all of it to pass through the heart when the person is resti
    14·2 answers
  • When an ice pack is applied to an injury, thermal energy from the injured area transfers to the ice, causing the blood vessels w
    8·2 answers
  • Superman is standing 393 m horizontally away from Lois Lane. A villain drops a rock from 4.00 m directly above Lois. If Superman
    13·1 answer
  • A typical jet airliner has a cruise airspeed of 900 km/h , which is its speed relative to the air through which it is flying. If
    9·1 answer
  • On a nice summer day,Kim takes her niece Madison for a walk in her stroller.If they start from rest and accelerate at a rate of
    14·1 answer
  • The eyes of many older people have lost the ability to accommodate, and so an older person’s near point may be more than 25 cm f
    12·1 answer
  • An ocean wave has a wavelength of 10 m and a frequency of 4.0 Hz. What is the velocity of the
    15·1 answer
  • Charge Q is distributed uniformly throughout the volume of an insulating sphere of radius R = 4.00 cm. At a distance of r = 8.00
    11·1 answer
  • a) Suppose that the current in the solenoid is I(t). Within the solenoid, but far from its ends, what is the magnetic field B(t)
    12·1 answer
  • The Lyman series comprises a set of spectral lines. All of these lines involve a hydrogen atom whose electron undergoes a change
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!