Answer:

Explanation:
<u>Free Fall Motion</u>
A free-falling object refers to an object that is falling under the sole influence of gravity. If the object is dropped from a certain height h, it moves downwards until it reaches ground level.
The speed vf of the object when a time t has passed is given by:

Where 
Similarly, the distance y the object has traveled is calculated as follows:

If we know the height h from which the object was dropped, we can solve the above equation for t:

The stadium is h=32 m high. A pair of glasses is dropped from the top and reaches the ground at a time:

The pen is dropped 2 seconds after the glasses. When the glasses hit the ground, the pen has been falling for:

Therefore, it has traveled down a distance:

Thus, the height of the pen is:

<span>f2 = f0/4
The gravity from the planet can be modeled as a point source at the center of the planet with all of the planet's mass concentrated at that point. So the initial condition for f0 has the satellite at a distance of 2r, where r equals the planet's radius.
The expression for the force of gravity is
F = G*m1*m2/r^2
where
F = Force
G = Gravitational constant
m1,m2 = masses involved
r = distance between center of masses.
Now for f2, the satellite has an altitude of 3r and when you add in the planet's radius, the distance from the center of the planet is now 4r. When you compare that to the original distance of 2r, that will show you that the satellite is now twice as far from the center of the planet as it was when it started. So let's compare the gravitational attraction, before and after.
f0 = G*m1*m2/r^2
f2 = G*m1*m2/(2r)^2
f2/f0 = (G*m1*m2/(2r)^2) / (G*m1*m2/r^2)
The Gm m1, and m2 terms cancel, so
f2/f0 = (1/(2r)^2) / (1/r^2)
f2/f0 = (1/4r^2) / (1/r^2)
And the r^2 terms cancel, so
f2/f0 = (1/4) / (1/1)
f2/f0 = (1/4) / 1
f2/f0 = 1/4
f2 = f0*1/4
f2 = f0/4
So the gravitational force on the satellite after tripling it's altitude is one fourth the original force.</span>
Answer
Hi,
correct answer is {D} 3.5 m/s²
Explanation
Acceleration is the rate of change of velocity with time. Acceleration can occur when a moving body is speeding up, slowing down or changing direction.
Acceleration is calculated by the equation =change in velocity/change in time
a= {velocity final-velocity initial}/(change in time)
a=v-u/Δt
The units for acceleration is meters per second square m/s²
In this example, initial velocity =2.0m/s⇒u
Final velocity=44.0m/s⇒v
Time taken for change in velocity=12 s⇒Δt
a= (44-2)/12 = 42/12
3.5 m/s²
Best Wishes!
Answer:
pu = 1260.9kg/m^3
the density of the unknown liquid is 1260.9kg/m^3
Explanation:
The density of a liquid is inversely proportional to the volume (height) of object submerged in it.
High density liquid possess higher buoyant force preventing objects from submerging.
p ∝ 1/V ∝ 1/h
since V = Ah
pu/pw = hw/hu
pu = pwhw/hu
Where;
p = density
h = height submerged
pu and pw is the density of unknown liquid and water respectively
hu and hw is the height of object submerged in unknown liquid and water respectively
pw = 1000kg/m^3
hu = 4.6cm = 0.046m
hw = 5.8cm = 0.058m
Substituting the given values;
pu = 1000×0.058/0.046
pu = 1260.9kg/m^3
the density of the unknown liquid is 1260.9kg/m^3
Kinetic energy. I hope that helps