Answer:
The centripetal force acting on the child is 39400.56 N.
Explanation:
Given:
Mass of the child is, 
Radius of the barrel is, 
Number of revolutions are, 
Time taken for 10 revolutions is, 
Therefore, the time period of the child is given as:

Now, angular velocity is related to time period as:

Now, centripetal force acting on the child is given as:

Therefore, the centripetal force acting on the child is 39400.56 N.
Answer:
Explanation:
Potential due to a charged metallic sphere having charge Q and radius r on its surface will be
v = k Q / r . On the surface and inside the metallic sphere , potential is the same . Outside the sphere , at a distance R from the centre potential is
v = k Q / R
a ) On the surface of the shell , potential due to positive charge is
V₁ = 
On the surface of the shell , potential due to negative charge is
V₁ = 
Total potential will be zero . they will cancel each other.
b ) On the surface of the sphere potential
= 
= 22.5 x 10⁵ V
On the surface of the sphere potential due to outer shell
= 
= -9 x 10⁵
Total potential
=( 22.5 - 9 ) x 10⁵
= 13.5 x 10⁵ V
c ) In the space between the two , potential will depend upon the distance of the point from the common centre .
d ) Inside the sphere , potential will be same as that on the surface that is
13.5 x 10⁵ V.
e ) Outside the shell , potential due to both positive and negative charge will cancel each other so it will be zero.
Answer:
a) 600nm
b) 300nm
Explanation:
the path difference = 2t
t = thickness of the film
L' = wavelength of light in film = L/n
L = wavength of light in air
n = refractive index of glass
(a)
for destructive interference 2t = L'/2 = L/2n
L = 4*t*n
= 4*120*10^-9*1.25
L = 600 nm
(b)
for constructive interference 2t = L' = L/1.25
L = 2tn
= 2 × 1.25 × 120nm
= 300 nm
C I believe is the correct answer. Developing possible solutions would be easier than spending hours researching or identifying the need.