answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeeva-Olga [200]
2 years ago
15

Three different planet-star systems, which are far apart from one another, are shown above. The masses of the planets are much l

ess than the masses of the stars.
In System A , Planet A of mass Mp orbits Star A of mass Ms in a circular orbit of radius R .

In System B , Planet B of mass 4Mp orbits Star B of mass Ms in a circular orbit of radius R .

In System C , Planet C of mass Mp orbits Star C of mass 4Ms in a circular orbit of radius R .
(a) The gravitational force exerted on Planet A by Star A has a magnitude of F0 . Determine the magnitudes of the gravitational forces exerted in System B and System C .

___ Magnitude of gravitational force exerted on Planet B by Star B

___ Magnitude of gravitational force exerted on Planet C by Star C
(b) How do the tangential speeds of planets B and C compare to that of Planet A ? In a clear, coherent paragraph-length response that may also contain equations and/or drawings, provide claims about

why the tangential speed of Planet B is either greater than, less than, or the same as that of Planet A , and
why the tangential speed of Planet C is either greater than, less than, or the same as that of Planet A .
Physics
1 answer:
alex41 [277]2 years ago
3 0

a) 4F0

b) Speed of planet B is the same as speed of planet A

Speed of planet C is twice the speed of planet A

Explanation:

a)

The magnitude of the gravitational force between two objects is given by the formula

F=G\frac{m_1 m_2}{r^2}

where

G is the gravitational constant

m1, m2 are the masses of the 2 objects

r is the separation between the objects

For the system planet A - Star A, we have:

m_1=M_p\\m_2 = M_s\\r=R

So the force is

F_A=G\frac{M_p M_s}{R^2}=F_0

For the system planet B - Star B, we have:

m_1 = 4 M_p\\m_2 = M_s\\r=R

So the force is

F=G\frac{4M_p M_s}{R^2}=4F_0

So, the magnitude of the gravitational force exerted on planet B by star B is 4F0.

For the system planet C - Star C, we have:

m_1 = M_p\\m_2 = 4M_s\\r=R

So the force is

F=G\frac{M_p (4M_s)}{R^2}=4F_0

So, the magnitude of the gravitational force exerted on planet C by star C is 4F0.

b)

The gravitational force on the planet orbiting around the star is equal to the centripetal force, therefore we can write:

G\frac{mM}{r^2}=m\frac{v^2}{r}

where

m is the mass of the planet

M is the mass of the star

v is the tangential speed

We can re-arrange the equation solving for v, and we find an expression for the speed:

v=\sqrt{\frac{GM}{r}}

For System A,

M=M_s\\r=R

So the tangential speed is

v_A=\sqrt{\frac{GM_s}{R}}

For system B,

M=M_s\\r=R

So the tangential speed is

v_B=\sqrt{\frac{GM_s}{R}}=v_A

So, the speed of planet B is the same as planet A.

For system C,

M=4M_s\\r=R

So the tangential speed is

v_C=\sqrt{\frac{G(4M_s)}{R}}=2(\sqrt{\frac{GM_s}{R}})=2v_A

So, the speed of planet C is twice the speed of planet A.

You might be interested in
A roller coaster car drops a maximum vertical distance of 35.4 m. Determine the maximum speed of the car at the bottom of that d
marissa [1.9K]

Answer:

The maximum speed of the car at the bottom of that drop is 26.34 m/s.

Explanation:

Given that,

The maximum vertical distance covered by the roller coaster, h = 35.4 m

We need to find the maximum speed of the car at the bottom of that drop. It is a case of conservation of energy. The energy at bottom is equal to the energy at top such that :

mgh=\dfrac{1}{2}mv^2

v=\sqrt{2gh}

v=\sqrt{2\times 9.8\times 35.4}

v = 26.34 m/s

So, the maximum speed of the car at the bottom of that drop is 26.34 m/s. Hence, this is the required solution.

8 0
2 years ago
Find the net electric force that the two charges would exert on an electron placed at point on the xx-axis at xx = 0.200 mm. Exp
UkoKoshka [18]

Answer:

The question has some details missing, here is the complete question ; A -3.0 nC point charge is at the origin, and a second -5.0nC point charge is on the x-axis at x = 0.800 m. Find the net electric force that the two charges would exert on an electron placed at point on the x-axis at x = 0.200 m.

Explanation:

The application of coulonb's law is used to approach the question as shown in the attached file.

6 0
2 years ago
In the ENGR 10 lab (E391), there are 50 long light bulbs (P=100 W) and 30 regular bulbs (P=60 W). How much energy is consumed li
Alenkinab [10]

Answer:

Total energy saving will be 0.8 KWH

Explanation:

We have given there are 50 long light bulbs of power 100 W so total power of 50 bulb = 100×50 = 5000 W = 5 KW

30 bulbs are of power 60 W

So total power of 30 bulbs = 30×60 = 1800 W = 1.8 KW

Total power of 80 bulbs = 1.8+5 = 6.8 KW

Total time = 3 hour

We know that energy E=power\times time=6.8\times 3=20.4KWH

Now power of each CFL bulb = 25 W

So power of 80 bulbs = 80×25 = 2000 W = 2 KW

Energy of 80 bulbs = 2×3 = 6 KWH

So total energy saving = 6.8-6 = 0.8 KWH

6 0
2 years ago
A 5.09 × 1014-hertz electromagnetic wave is traveling through a transparent medium. The main factor that determines the speed of
sergiy2304 [10]
We are given an electromagnetic wave with a frequency of 5.09 x 10^14 Hz and travelling through a transparent medium. If the medium was vacuum, the speed of the wave would be equal to the speed of light. Otherwise, the main factor that would determine the speed of the wave is its wavelength.
6 0
2 years ago
A tennis player serves a tennis ball such that it is moving horizontally when it leaves the racquet. When the ball travels a hor
nalin [4]

Answer:

u_x=38.13\ m/s

Explanation:

Given that initially ball moves in the horizontal direction ,it means that the velocity in the vertical direction is zero.

Horizontal distance = 13 m

Vertical distance = 57 cm

Lets take time to cover 57 cm distance in vertical direction is t.

We know that g is the constant acceleration in the vertical direction so we can apply the equation of motion in the vertical direction.

S=u_yt+\dfrac{1}{2}gt^2

Here u_y=0

S= 57 cm

0.57=0\times t+\dfrac{1}{2}\times 9.81\times t^2

t=0.34 s

Now in the horizontal direction

x=u_xt

Here x=13 m

t= 0.34 s

So

13=u_x\times 0.34

u_x=38.13\ m/s

So the initial speed of ball is 38.13 m/s.

7 0
1 year ago
Other questions:
  • What two properties show that the drink is a fluid
    13·2 answers
  • If steam enters a turbine at 600K and is exhausted at 400K, calculate the efficiency of the engine.
    13·2 answers
  • if one sprinter runs the 400.0 m in 58 seconds and another can run the same distance in 60.0 seconds, by how much distance will
    11·2 answers
  • Ten seconds after an electric fan is turned on, the fan rotates at 300 rev/min. its average angular acceleration is
    7·1 answer
  • A person weighing 0.70 kn rides in an elevator that has an upward acceleration of 1.5 m/s2. what is the magnitude of the normal
    11·1 answer
  • The energy difference between the 5d and the 6s sublevels in gold accounts for its color. If this energy difference is about 2.7
    6·1 answer
  • Follow these steps to solve this problem: Two identical loudspeakers, speaker 1 and speaker 2, are 2.0 m apart and are emitting
    6·1 answer
  • A rocket exhausts fuel with a velocity of 1500m/s, relative to the rocket. It starts from rest in outer space with fuel comprisi
    15·2 answers
  • Two equal length of wire made of the same material but of different diameters have an effective resistance of 0.8 ohm when they
    9·1 answer
  • A toy of mass 0.190-kg is undergoing SHM on the end of a horizontal spring with force constant k = 350 N/m . When the toy is a d
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!