Answer:

Explanation:
The equation that relates heat Q with the temperature change
of a substance of mass <em>m </em>and specific heat <em>c </em>is
.
We want to calculate the final temperature <em>T, </em>so we have:

Which for our values means (in this case we do not need to convert the mass to Kg since <em>c</em> is given in g also and they cancel out, but we add
to our temperature in
to have it in
as it must be):

Answer:
Yes
Explanation:
p = momentum of photon
E = energy of photon
c = velocity of light
Units of p = kg m /s
Units of E = kg m^2 / s^2
Units of E / p = {kg m^2 / s^2} / {kg m /s} = m/s
It is the unit of speed, so by the division of energy to the momentum, we get the speed. yes it is correct.
Answer:
Juan and Kuri complete one revolution in the same time, but Juan travels a shorter distance and has a lower speed.
Explanation:
Since Juan is closer to the center and Kuri is away from the center so we can say that Juan will move smaller distance in one complete revolution
As we know that the distance moved in one revolution is given as

also the time period of revolution for both will remain same as they move with the time period of carousel
Now we can say that the speed is given as

so Juan will have less tangential speed. so correct answer will be
Juan and Kuri complete one revolution in the same time, but Juan travels a shorter distance and has a lower speed.
Note that
1 yd = 0.9144 m
Therefore,
The length of an American Football field is
(100 yds)*(09144 m/yd) = 91.44 m
Because the soccer field is 110 m long, its length exceeds the American Football Field by
100 - 91.44 = 8.56 m
or
(8.56/.9144) = 9.36 yd
This difference is equivalent to (8.56/91.44)*100 = 9.4%
Answer:
The Soccer Field is longer by
8.56 m, or
9.36 yd, or
9.4%
To solve this exercise it is necessary to apply the kinematic equations of angular motion.
By definition we know that the displacement when there is constant angular velocity is

From our given data we know that,



Moreover we know that

Therefore for time t=8.1s we have,



That number in revolution is:


Here, we see that there are 15 complete revolutions
And 0.108 revolutions i not complete, so the tunable rotation is

Therefore the angle of the speck at a time 8.1s is 