Answer:
d = 2021.6 km
Explanation:
We can solve this distance exercise with vectors, the easiest method s to find the components of the position of each plane and then use the Pythagorean theorem to find distance between them
Airplane 1
Height y₁ = 800m
Angle θ = 25°
cos 25 = x / r
sin 25 = z / r
x₁ = r cos 20
z₁ = r sin 25
x₁ = 18 103 cos 25 = 16,314 103 m
= 16314 m
z₁ = 18 103 sin 25 = 7,607 103 m= 7607 m
2 plane
Height y₂ = 1100 m
Angle θ = 20°
x₂ = 20 103 cos 25 = 18.126 103 m = 18126 m
z₂ = 20 103 without 25 = 8.452 103 m = 8452 m
The distance between the planes using the Pythagorean Theorem is
d² = (x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²2
Let's calculate
d² = (18126-16314)² + (1100-800)² + (8452-7607)²
d² = 3,283 106 +9 104 + 7,140 105
d² = (328.3 + 9 + 71.40) 10⁴
d = √(408.7 10⁴)
d = 20,216 10² m
d = 2021.6 km
Answer:
0.6A
Explanation:
Area of loop =200cm2 =200 x10 ∧-4m∧2 Change in Magnetic field (B)= 25mT -10mT =15mT time =5ms
From Faraday' s law of induction EMF(E)= change in magnetic field/time
E= 15mT/5ms
Note, that one weber per second is equivalent to one volt.
= 3V
from Ohm's law I =E/R
=3/5 =0.6A
Answer:
(a) A = 
(b) 
(c) 
(d) 
Solution:
As per the question:
Radius of atom, r = 1.95
Now,
(a) For a simple cubic lattice, lattice constant A:
A = 2r
A = 
(b) For body centered cubic lattice:


(c) For face centered cubic lattice:


(d) For diamond lattice:


Answer:
Connect C₁ to C₃ in parallel; then connect C₂ to C₁ and C₂ in series. The voltage drop across C₁ the 2.0-μF capacitor will be approximately 2.76 volts.
.
Explanation:
Consider four possible cases.
<h3>Case A: 12.0 V.</h3>

In case all three capacitors are connected in parallel, the
capacitor will be connected directed to the battery. The voltage drop will be at its maximum: 12 volts.
<h3>Case B: 5.54 V.</h3>
![-3.0\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-1.5\;\mu\text{F}-\end{array}]-](https://tex.z-dn.net/?f=-3.0%5C%3B%5Cmu%5Ctext%7BF%7D-%5B%5Cbegin%7Barray%7D%7Bc%7D-%7B%5Cbf%202.0%5C%3B%5Cmu%5Ctext%7BF%7D%7D-%5C%5C-1.5%5C%3B%5Cmu%5Ctext%7BF%7D-%5Cend%7Barray%7D%5D-)
In case the
capacitor is connected in parallel with the
capacitor, and the two capacitors in parallel is connected to the
capacitor in series.
The effective capacitance of two capacitors in parallel is the sum of their capacitance: 2.0 + 1.5 = 3.5 μF.
The reciprocal of the effective capacitance of two capacitors in series is the sum of the reciprocals of the capacitances. In other words, for the three capacitors combined,
.
What will be the voltage across the 2.0 μF capacitor?
The charge stored in two capacitors in series is the same as the charge in each capacitor.
.
Voltage is the same across two capacitors in parallel.As a result,
.
<h3>Case C: 2.76 V.</h3>
.
Similarly,
- the effective capacitance of the two capacitors in parallel is 5.0 μF;
- the effective capacitance of the three capacitors, combined:
.
Charge stored:
.
Voltage:
.
<h3 /><h3>Case D: 4.00 V</h3>
.
Connect all three capacitors in series.
.
For each of the three capacitors:
.
For the
capacitor:
.
To solve this problem it is necessary to apply the concepts related to the heat flux rate expressed in energetic terms. The rate of heat flow is the amount of heat that is transferred per unit of time in some material. Mathematically it can be expressed as:

Where
k = 0.84 J/s⋅m⋅°C (The thermal conductivity of the material)
Area
Length
= Temperature of the "hot"reservoir
= Temperature of the "cold"reservoir
Replacing with our values we have that,



Therefore the correct answer is B.