Answer:
a) xf = 5.1 m
b) u = 0.304
c) x = 10.3 m
Explanation:
we will use the following formula:
u = 0.1 + A*x
Si x = 12.5 m, u = 0.6
Clearing A:
A = 0.5/12.5 = 0.04 m^-1
a) we have to:
W = Ekf - Eki
where Ekf = final kinetic energy
Eki = initial kinetic energy
9.8*(0.1xf + ((0.04*xf^2)/(2))) = (4.5^2)/(2)
Clearing xf, we have:
xf = 5.1 m
b) Replacing values for u:
u = 0.1 + (0.04*5.1) = 0.304
c) Wf = Ekf - Eki
-u*m*x*g = 0 - (m*v^2)/2
Clearing x:
x = v^2/(2*u*g) = (4.5^2)/(2*0.1*9.8) = 10.3 m
<h3><u>Answer;</u></h3>
<em>Work = 125 joules </em>
<h3><u>Explanation and solution</u>;</h3>
- Work is the product of force and the distance covered. Therefore, Work = force × distance.
- Work is measured in joules.
- Work is also a change in energy, such that work is done when energy changes, so when kinetic energy, or potential energy changes the there is work being done.
Thus; kinetic energy = work done
Kinetic energy = 1/2mv²
= 1/2 × 10× 5²
= 5 × 25
= 125 joules
Hence, work done is 125 joules.
Answer:
Explanation:
Given:
- gravitational field strength of moon at a distance R from its center,

- Distance of the satellite from the center of the moon,

<u>Now as we know that the value of gravity of any heavenly body is at height h is given as:</u>

∴The gravitational field strength will become one-fourth of what it is at the surface of the moon.
Shear stress = 1.0 N/m² (Pa)
For water, the dynamic viscosity = 10⁻³ Pa-s at 20°C.
The velocity gradient required = (Shear stress)/(Dynamic viscosity)
= (1.0 Pa)/( 10⁻³ Pa-s)
= 10³ 1/s
Answer: 10³ s⁻¹
Answer:

Explanation:
Thrust is known as a reaction force which appears when a system expels or accelerates mass in one specific direction. If we know the acceleration and the mass of the air expelled by the jet engine, we can compute the thrust
.
The acceleration is calculated by using the dynamics formula

The values are


The thrust is
