Centripetal Force (Fcp) = ?
His arm length = Radius (R) = 0.75 m
Discus velocity = Linear Velocity (V) = 5 m/s
Discus mass (m) = 2 kg
Centripetal Acceleration (Acp) = V^2/R or W^2 x R
In this case i will use the V^2/R formula, because it uses the discus velocity (V).


Answer: Last option, 66 N.
Answer:
Explanation:
3. Newton’s third law explains how every action has an equal but opposite reaction, meaning that forces comes in pairs. While the locomotive’s wheels are pushing back against the ground as the action force, the ground is producing a reaction force towards the locomotive, propelling it forward. Another pair of forces that act on the locomotive is gravity and normal force. While gravity is pulling the locomotive towards the ground, the normal force the ground exerts on the locomotive is why the locomotive doesn’t fall through the ground.
4. The force of Earth’s gravity on the Sun is weaker than the force of the Sun’s gravity on Earth. The Sun’s attraction affects the motion of Earth more than the Earth’s attraction affects the Sun’s motion because according to Newton’s second law, force has mass as one of its factors. The Sun has a significantly higher mass than Earth, meaning that its force of gravity would also be significantly higher. Newton’s third law is why the Earth doesn’t get marginally closer to the Sun, stating that every action has an equal and opposite reaction. As the Sun is pulling Earth towards itself, Earth is pulling away from the Sun.
Answer:

Explanation:
given data:
flow Q = 9 m^{3}/s
velocity = 8 m/s
density of air = 1.18 kg/m^{3}
minimum power required to supplied to the fan is equal to the POWER POTENTIAL of the kinetic energy and it is given as

here
is mass flow rate and given as


Putting all value to get minimum power


A receptor that contains many mechanically-gated ion channels would function BEST as a <span>tactile receptor.</span>
Answer:
2805 °C
Explanation:
If the gas in the tank behaves as ideal gas at the start and end of the process. We can use the following equation:
The key issue is identify the quantities (P,T, V, n) in the initial and final state, particularly the quantities that change.
In the initial situation the gas have an initial volume
, temperature
, and pressure
,.
And in the final situation the gas have different volume
and temeperature
, the same pressure
,, and the same number of moles
,.
We can write the gas ideal equation for each state:
and
, as the pressure are equals in both states we can write
solving for
(*)
We know
= 935 °C, and that the
(the complete volume of the tank) is the initial volume
plus the part initially without gas which has a volume twice the size of the initial volume (read in the statement: the other side has a volume twice the size of the part containing the gas). So the final volume 
Replacing in (*)