answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
2 years ago
5

Una columna de mármol, cuya área de sección transversal es de 2.0 m2 sostiene una masa de 25.000 kg. Encontrar: (3 pto )a) El es

fuerzo en la columna.b) La deformación unitaria.c) ¿En cuánto se acorta la columna si su altura es de 12 m?Dato: el módulo de Young del mármol es 50 x 109 N/m2 ( la necesito para 30 minutos ayudame) y todo el ejercicio
Physics
1 answer:
bazaltina [42]2 years ago
7 0

Responder:

122,500 Pa; 2.45 × 10 ^ -6; 2.94 × 10 ^ -5m

Explicación:

Dado lo siguiente:

Área de sección transversal (A) = 2m ^ 2

Masa (m) = 25000 kg

Módulo de Young = 50 x 10 ^ 9 N / m2

(1) estrés en la columna:

Estrés = Fuerza / Área

F = masa * aceleración debido a la gravedad

F = 25000kg * 9.8m / s ^ 2 = 245,000J

Estrés = 245,000J / 2m ^ 2

Estrés = 122,500 Pa

2) Deformación de la unidad (deformación):

Usando la relación:

Módulo de Young = Estrés / tensión

50 × 10 ^ 9 = 122,500 / CEPA

Cepa = 122500 / (50 × 10^9)

Cepa = 0.00000245

C) Si la altura es de 12 m, ¿cuánto se acorta la columna?

Cepa = extensión / longitud

0.00000245 = extensión / 12

0,00000245 * 12

0,0000294 m

You might be interested in
A race car driver must average 200km/hr for four laps to qualify for a race. Because of engine trouble, the car averages only 17
vampirchik [111]
The average speed would have to be 260 km/hr due to the driver originally going 30 km/hr too slow the first two laps
5 0
2 years ago
The A-string (440 HzHz) on a piano is 38.9 cmcm long and is clamped tightly at both ends. If the string tension is 667N, what's
Mice21 [21]

Answer:

Mass, m = 2.2 kg                                

Explanation:

It is given that,

Frequency of the piano, f = 440 Hz

Length of the piano, L = 38.9 cm = 0.389 m

Tension in the spring, T = 667 N

The frequency in the spring is given by :

f=\dfrac{1}{2L}\sqrt{\dfrac{T}{\mu}}

\mu=\dfrac{m}{L} is the linear mass density

On rearranging, we get the value of m as follows :

m=\dfrac{T}{4Lf^2}

m=\dfrac{667}{4\times 0.389\times (440)^2}

m = 0.0022 kg

or

m = 2.2 grams

So, the mass of the object is 2.2 grams. Hence, this is the required solution.

3 0
2 years ago
Read 2 more answers
The cockroach Periplaneta americana can detect a static electric field of magnitude 8.50 kN/C using their long antennae. If the
otez555 [7]

Answer:

0.647 nC

Explanation:

The force experienced by a charge due to the presence of an electric field is given by

F=qE

where

q is the charge

E is the magnitude of the electric field

In this problem, each antenna is modelled as it was a single point charge, experiencing a force of

F=5.50\mu N = 5.50\cdot 10^{-6} N

Therefore, if the electric field magnitude is

E=8.50 kN/C = 8500 N/C

Then the charge on each antenna would be

q=\frac{F}{E}=\frac{5.50\cdot 10^{-6} N}{8500 N/C}=6.47\cdot 10^{-10} C = 0.647 nC

8 0
2 years ago
A black, totally absorbing piece of cardboard of area A = 1.7 cm2 intercepts light with an intensity of 8.1 W/m2 from a camera s
Furkat [3]

Answer:

2.7x10⁻⁸ N/m²

Explanation:

Since the piece of cardboard absorbs totally the light, the radiation pressure can be found using the following equation:

p_{rad} = \frac{I}{c}

<u>Where:</u>

p_{rad}: is the radiation pressure

I: is the intensity of the light = 8.1 W/m²

c: is the speed of light = 3.00x10⁸ m/s

Hence, the radiation pressure is:

p_{rad} = \frac{I}{c} = \frac{8.1 W/m^{2}}{3.00 \cdot 10^{8} m/s} = 2.7 \cdot 10^{-8} N/m^{2}

Therefore, the radiation pressure that is produced on the cardboard by the light is 2.7x10⁻⁸ N/m².

I hope it helps you!

3 0
2 years ago
Read 2 more answers
A sample of a gas has a volume of 639 cm3 when the pressure is 75.9 kPa. What is the volume of the gas when the pressure is incr
const2013 [10]

Answer:

388 cm^3

Explanation:

For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

pV=const.

which can also be rewritten as

p_1 V_1 = p_2 V_2

In our case, we have:

p_1 = 75.9 kPa is the initial pressure

V_1 = 639 cm^3 is the initial volume

p_2 = 125 kPa is the final pressure

Solving for V2, we find the final volume:

v_2 = \frac{p_1 V_1}{p_2}=\frac{(75.9)(639)}{125}=388 cm^3

7 0
2 years ago
Other questions:
  • Jaiden is writing a report about the structure of the atom. In her report, she says that the atom has three main parts and two s
    9·2 answers
  • The rotational speeds of four generators are listed in RPM (revolutions per minute). Arrange the generators in order based on th
    13·2 answers
  • A 5.8 × 104-watt elevator motor can lift a total weight of 2.1 × 104 newtons with a maximum constant speed of
    12·1 answer
  • A bullet is fired horizontally, and at the same instant a second bullet is dropped from the same height. Ignore air resistance.
    13·1 answer
  • . 30
    6·1 answer
  • A vertical wire carries a current straight up in a region where the magnetic field vector points due north. What is the directio
    13·1 answer
  • In 2016 there were 2025 reported collisions between trains and cars that’s resulted in 265 fatalities. Explain the change in kin
    10·1 answer
  • Particle q1 has a positive 6 µC charge. Particle q2 has a positive 2 µC charge. They are located 0.1 meters apart.
    14·2 answers
  • If radio waves are used to communicate with an alien spaceship approaching Earth at 10% of the speed of light c, the aliens woul
    8·1 answer
  • A radioactive isotope has a half-life of 2 hours. If a sample of the element contains 600,000 radioactive nuclei at 12 noon, how
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!