answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ratling [72]
1 year ago
14

A 60-μC charge is held fixed at the origin and a −20-μC charge is held fixed on the x axis at a point x = 1.0 m. If a 10-μC char

ge is released from rest at a point x = 40 cm, what is its kinetic energy the instant it passes the point x = 70 cm?
Physics
1 answer:
Aleksandr [31]1 year ago
5 0

Answer:

Ek =  8,79 [J]

Explanation:

We are going to solve this problem, using  the energy conservation principle

State 1 or initial state (charges at rest t=0)

E₁  = Ek  + U₁

As charge are at rest Ek = 0

And  U₁ has two components

U₁₂   = K * Q₁*Q₂ / 0,4          and    U₃₂  = K*Q₃*Q₂ / 0,6

U₁₂  = 9*10⁹* 60*10⁻⁶*10*10⁻⁶/0,4  ⇒ U₁₂ = 9*60*10*10⁻³/0,4

U₃₂ =  - 9*10⁹* 20*10⁻⁶*10*10⁻⁶/0,6  ⇒ U₃₂ = - 9*20*10*10⁻³/0,6

U₁₂ = 540*10⁻2/0,4 [J]   ⇒13,5 [J]

U₃₂ = - 180*10⁻² /0,6 [J] ⇒ - 3 [J]

Then   E₁ = E₁₂ + E₃₂    

E₁ = 10,5 [J]

At  the moment of Q₂ passing x = 40 cm  or 0,4 m

E₂ = Ek + U₂

We can calculate the components of U₂ in this new configuration

U₂  =  U₁₂  + U₃₂

U₁₂  = 9*10⁹* 60*10⁻⁶*10*10⁻⁶/0,7   ⇒  U₁₂ = 9*60*10*10⁻³/0,7

U₁₂ = 540*10⁻²/0,7       U₁₂ = 7,71 [J]

U₃₂ =  - 9*10⁹* 20*10⁻⁶*10*10⁻⁶/0,3  ⇒ U₃₂ = -  9*20*10*10⁻³/0,3

U₃₂ = -  9*20*10⁻²/0,3  

U₃₂ = - 6

U₂ = 7,71 -6

U₂ = 1,71 [J]

Then as  

E₂  = Ek + U₂  and  E₂ = E₁

Then

Ek + U₂ = E₁

Ek =  10,5 - U₂    

Ek  = 10,5 - 1,71

Ek =  8,79 [J]

You might be interested in
A fisherman is watching water waves ripple past his boat. How could he determine the wavelength of the water waves?
natta225 [31]
Wavelength can be calculated using the following formula: wavelength = wave velocity/frequency. Wavelength usually is expressed in units of meters.
7 0
1 year ago
A floating balloon can be formed when the substance helium is released from a compressed container into a flat rubber balloon. T
mel-nik [20]

Helium’s state when the decompressed helium atoms expand and float up, making the rubber balloon expand around them and float with them is gas.

 

<span>Helium is a chemical element with symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas, the first in the noble gas group in the periodic table. Its boiling point is the lowest among all the elements.</span>
6 0
2 years ago
Read 2 more answers
A p-type Si sample is used in the Haynes-Shockley experiment. The length of the sample is 2 cm, and two probes are separated by
Airida [17]

Answer:

Mobility of the minority carriers, \mu_{n} =1184.21 cm^{2} /V-sec

Diffusion coefficient for minority carriers,D_{n} = 29.20 cm^2 /s

Verified from Einstein relation as  \frac{D_{n} }{\mu_{n} }  = 25 mV

Explanation:

Length of sample, l_{s} = 2 cm

Separation between the two probes, L = 1.8 cm

Drift time, t_{d} = 0.608 ms

Applied voltage, V = 5 V

Mobility of the minority carriers ( electrons), \mu_{n} = \frac{V_{d} }{E}

Where the drift velocity, V_{d} = \frac{L}{t_{d} }

V_{d} = \frac{1.8}{0.608 * 10^{-3} } \\V_{d} = 2960.53 cm/s

and the Electric field strength, E = \frac{V}{l_{s} }

E = 5/2

E = 2.5 V/cm

Mobility of the minority carriers:

\mu_{n} = 2960.53/2.5\\\mu_{n} =1184.21 cm^{2} /V-sec

The electron diffusion coefficient, D_{n} = \frac{(\triangle x)^{2} }{16 t_{d} }

\triangle x = (\triangle t )V_{d}, where Δt = separation of pulse seen in an oscilloscope in time( it should be in micro second range)

\triangle x = \frac{(\triangle t) L}{t_{d} } \\\triangle x = \frac{180*10^{-6} * 1.8}{0.608*10^{-3}  }\\\triangle x =0.533 cm

D_{n} = \frac{0.533^{2} }{16 * 0.608 * 10^{-3} }\\D_{n} = 29.20 cm^2 /s

For the Einstein equation to be satisfied, \frac{D_{n} }{\mu_{n} } = \frac{KT}{q} = 0.025 V

\frac{D_{n} }{\mu_{n} } = \frac{29.20}{1184.21} \\\frac{D_{n} }{\mu_{n} } = 0.025 = 25 mV

Verified.

4 0
2 years ago
A device used to increase or decrease the emf in the second of two unconnected coils is a
grigory [225]
<span>The answer is transformer. They utilize electromagnetic induction to generate current. This is only possible in alternating current due to the differential increase and decrease of electrical current that induces changes in magnetic flux in the coil. This varies the magnetic flux of the primary coil that generates current in the secondary coil.</span>
4 0
2 years ago
The wheels of the locomotive push back on the tracks with a constant net force of 7.50 × 105 N, so the tracks push forward on th
Rasek [7]

Answer:

The freight train would take 542.265 second to increase the speed of the train from rest to 80.0 kilometers per hour.

Explanation:

Statement is incomplete. Complete description is presented below:

<em>A freight train has a mass of </em>1.83\times 10^{7}\,kg<em>. The wheels of the locomotive push back on the tracks with a constant net force of </em>7.50\times 10^{5}\,N<em>, so the tracks push forward on the locomotive with a force of the same magnitude. Ignore aerodynamics and friction on the other wheels of the train. How long, in seconds, would it take to increase the speed of the train from rest to 80.0 kilometers per hour?</em>

If locomotive have a constant net force (F), measured in newtons, then acceleration (a), measured in meters per square second, must be constant and can be found by the following expression:

a = \frac{F}{m} (1)

Where m is the mass of the freight train, measured in kilograms.

If we know that F = 7.50\times 10^{5}\,N and m = 1.83\times 10^{7}\,kg, then the acceleration experimented by the train is:

a = \frac{7.50\times 10^{5}\,N}{1.83\times 10^{7}\,kg}

a = 4.098\times 10^{-2}\,\frac{m}{s^{2}}

Now, the time taken to accelerate the freight train from rest (t), measured in seconds, is determined by the following formula:

t = \frac{v-v_{o}}{a} (2)

Where:

v - Final speed of the train, measured in meters per second.

v_{o} - Initial speed of the train, measured in meters per second.

If we know that a = 4.098\times 10^{-2}\,\frac{m}{s^{2}}, v_{o} = 0\,\frac{m}{s} and v = 22.222\,\frac{m}{s}, the time taken by the freight train is:

t = \frac{22.222\,\frac{m}{s}-0\,\frac{m}{s}  }{4.098\times 10^{-2}\,\frac{m}{s^{2}} }

t = 542.265\,s

The freight train would take 542.265 second to increase the speed of the train from rest to 80.0 kilometers per hour.

6 0
1 year ago
Other questions:
  • While looking at calcium (Ca) on the periodic table, a student needs to find an element with a greater atomic mass in the same p
    11·2 answers
  • As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
    12·2 answers
  • In the middle of the night you are standing a horizontal distance of 14.0 m from the high fence that surrounds the estate of you
    15·1 answer
  • The wall of a large room is covered with acoustic tile in which small holes are drilled 4.6 mm from center to center. How far ca
    6·1 answer
  • Calculate the linear momentum per photon,energy per photon, and the energy per mole of photons for radiation of wavelength; (a)
    11·1 answer
  • A cube of linear elastic material is again subjected to a vertical compressive stress s1 in the 1-direction, but is now constrai
    10·1 answer
  • Grace, Erin, and Tony are on a seesaw. Grace has a mass of 45kg and is seated 0.7m to the left of the fulcrum. Nicole has a mass
    13·1 answer
  • A battery powers a circuit for a small noisy fan. The fan’s motor gets warm as it turns. What energy transformations are taking
    6·2 answers
  • A skier uses a pair of poles to push himself down a ski slope. Which of the following correctly states when the skier has the mo
    11·1 answer
  • The late news reports the story of a shooting in the city. Investigators think that they have recovered the weapon and they run
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!