Answer:
Mass of bike = 38 kg.
Explanation:
Kinetic energy is given by the expression,
, where m is the mass and v is the velocity.
Here speed of child riding bike = 6 m/s
Mass of child = 30 kg
Total kinetic energy = 1224 J
Let the mass of bike be, m kg
So, total mass of child and bike = (m + 30) kg
Substituting,

So, mass of bike = 38 kg.
Answer:
h = v₀² / 2g
, h = k/4g x²
Explanation:
In this exercise we can use the law of conservation of energy at two points, the lowest, before the shot and the highest point that the mouse reaches
Starting point. Lower compressed spring
Em₀ = K = ½ m v²
Final point. Highest on the path
= U = mg h
As or no friction the energy is conserved
Em₀ = Em_{f}
½ m v₀²² = m g h
h = v₀² / 2g
We can also use as initial energy the energy stored in the spring that will later be transferred to the mouse
½ k x² = 2 g h
h = k/4g x²
Complete Question
Part of the question is shown on the first uploaded image
The rest of the question
What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1 and q2 at x3 = -1.220 m ? Your answer may be positive or negative, depending on the direction of the force. Express your answer numerically in newtons to three significant figures.
Answer:
The net force exerted on the third charge is
Explanation:
From the question we are told that
The third charge is 
The position of the third charge is 
The first charge is 
The position of the first charge is 
The second charge is 
The position of the second charge is
The distance between the first and the third charge is


The force exerted on the third charge by the first is

Where k is the coulomb's constant with a value 
substituting values
The distance between the second and the third charge is


The force exerted on the third charge by the first is mathematically evaluated as
substituting values

The net force is
substituting values

Answer:
Explanation:
3. Newton’s third law explains how every action has an equal but opposite reaction, meaning that forces comes in pairs. While the locomotive’s wheels are pushing back against the ground as the action force, the ground is producing a reaction force towards the locomotive, propelling it forward. Another pair of forces that act on the locomotive is gravity and normal force. While gravity is pulling the locomotive towards the ground, the normal force the ground exerts on the locomotive is why the locomotive doesn’t fall through the ground.
4. The force of Earth’s gravity on the Sun is weaker than the force of the Sun’s gravity on Earth. The Sun’s attraction affects the motion of Earth more than the Earth’s attraction affects the Sun’s motion because according to Newton’s second law, force has mass as one of its factors. The Sun has a significantly higher mass than Earth, meaning that its force of gravity would also be significantly higher. Newton’s third law is why the Earth doesn’t get marginally closer to the Sun, stating that every action has an equal and opposite reaction. As the Sun is pulling Earth towards itself, Earth is pulling away from the Sun.
Answer:
h = 2 R (1 +μ)
Explanation:
This exercise must be solved in parts, first let us know how fast you must reach the curl to stay in the
let's use the mechanical energy conservation agreement
starting point. Lower, just at the curl
Em₀ = K = ½ m v₁²
final point. Highest point of the curl
= U = m g y
Find the height y = 2R
Em₀ = Em_{f}
½ m v₁² = m g 2R
v₁ = √ 4 gR
Any speed greater than this the body remains in the loop.
In the second part we look for the speed that must have when arriving at the part with friction, we use Newton's second law
X axis
-fr = m a (1)
Y Axis
N - W = 0
N = mg
the friction force has the formula
fr = μ N
fr = μ m g
we substitute 1
- μ mg = m a
a = - μ g
having the acceleration, we can use the kinematic relations
v² = v₀² - 2 a x
v₀² = v² + 2 a x
the length of this zone is x = 2R
let's calculate
v₀ = √ (4 gR + 2 μ g 2R)
v₀ = √4gR( 1 + μ)
this is the speed so you must reach the area with fricticon
finally have the third part we use energy conservation
starting point. Highest on the ramp without rubbing
Em₀ = U = m g h
final point. Just before reaching the area with rubbing
= K = ½ m v₀²
Em₀ = Em_{f}
mgh = ½ m 4gR(1 + μ)
h = ½ 4R (1+ μ)
h = 2 R (1 +μ)