Answer:
Two identical spheres are released from a device at time t = 0 from the same ... Sphere A has no initial velocity and falls straight down. ... (b) On the axes below, sketch and label a graph of the horizontal component of the velocity of sphere A and of sphere B as a function of time. ... Which ball has the greater vertical velocity
Explanation:
All the weight of the wooden board is bear by the support located at the centre of the rod, and the other support which is located at the end, will have no reaction force, or 0 reaction force.
Therefore the reaction at the centre support is equal to the weight of the board, while the support at the end has 0 reaction force.
Answer:
0.000003782 m
0.000001891 m
0.000001197125 m
Explanation:
= Wavelength = 248 nm
D = Diameter of beam = 1 cm
f = Focal length = 0.625 cm
The angle is given by

The width is given by

The required width is 0.000003782 m
Minimum resolvable line separation is given by

The minimum resolvable line separation between adjacent lines is 0.000001891 m
when 

The new minimum resolvable line separation between adjacent lines is

Answer:
-13.18°C
Explanation:
To develop the problem it is necessary to consider the concepts related to the thermal conduction rate.
Its definition is given by the function

Where,
Q = The amount of heat transferred
t = time
k = Thermal conductivity constant
A = Cross-sectional area
The difference in temperature between one side of the material and the other
d= thickness of the material
The problem says that there is a loss of heat twice that of the initial state, that is

Replacing,




Solvinf for
,

Therefore the temprature at the outside windows furface when the heat lost per second doubles is -13.18°C
Answer:
= 829.69 Watt
≅ 830 Watt
Explanation:
Given that,
Velocity of air flow = 12.5m/s
Rate of flow of air = 9m³/s
Density of air = 1.18kg/m³
power by kinetic energy = 1/2(mv²)
mass = density × volume
m = 1.18 × 9
= 10.62 kg/s
power = 1/2 mV²
= 1/2 (10.62 × 12.5²)
= 829.69 Watt
≅ 830 Watt
Flow rate
u
=
9
m
3
/
s
Velocity of the air
V
=
8
m/s
Density of the air
ρ
=
1.18
kg
/
m
3