answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetllana [295]
2 years ago
10

An automobile accelerates from zero to 30 m/s in 6.0 s. The wheels have a diameter of 0.40 m. What is the average angular accele

ration of each wheel?
Physics
1 answer:
leva [86]2 years ago
3 0

To solve this problem we will use the concepts related to angular motion equations. Therefore we will have that the angular acceleration will be equivalent to the change in the angular velocity per unit of time.

Later we will use the relationship between linear velocity, radius and angular velocity to find said angular velocity and use it in the mathematical expression of angular acceleration.

The average angular acceleration

\alpha = \frac{\omega_f - \omega_0}{t}

Here

\alpha = Angular acceleration

\omega_{f,i} = Initial and final angular velocity

There is not initial angular velocity,then

\alpha = \frac{\omega_f}{t}

We know that the relation between the tangential velocity with the angular velocity is given by,

v = r\omega

Here,

r = Radius

\omega = Angular velocity,

Rearranging to find the angular velocity

\omega = \frac{v}{r}}

\omega = \frac{30}{0.20} \rightarrow Remember that the radius is half te diameter.

Now replacing this expression at the first equation we have,

\alpha = \frac{30}{0.20*6}

\alpha = 25 rad /s^2

Therefore teh average angular acceleration of each wheel is 25rad/s^2

You might be interested in
A 0.300kg glider is moving to the right on a frictionless, ­horizontal air track with a speed of 0.800m/s when it makes a head-o
e-lub [12.9K]

Answer:

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

0.010935 J

0.0858675 J

Explanation:

m_1 = Mass of first glider = 0.3 kg

m_2 = Mass of second glider = 0.15 kg

u_1 = Initial Velocity of first glider = 0.8 m/s

u_2 = Initial Velocity of second glider = 0 m/s

v_1 = Final Velocity of first glider

v_2 = Final Velocity of second glider

As momentum and Energy is conserved

m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}

{\tfrac {1}{2}}m_{1}u_{1}^{2}+{\tfrac {1}{2}}m_{2}u_{2}^{2}={\tfrac {1}{2}}m_{1}v_{1}^{2}+{\tfrac {1}{2}}m_{2}v_{2}^{2}

From the two equations we get

v_{1}=\frac{m_1-m_2}{m_1+m_2}u_{1}+\frac{2m_2}{m_1+m_2}u_2\\\Rightarrow v_1=\frac{0.3-0.15}{0.3+0.15}\times 0.8+\frac{2\times 0.15}{0.3+0.15}\times 0\\\Rightarrow v_1=0.27\ m/s

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

v_{2}=\frac{2m_1}{m_1+m_2}u_{1}+\frac{m_2-m_1}{m_1+m_2}u_2\\\Rightarrow v_2=\frac{2\times 0.3}{0.3+0.15}\times 0.8+\frac{0.3-0.15}{0.3+0.15}\times 0\\\Rightarrow v_2=1.067\ m/s

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

Kinetic energy is given by

K=\frac{1}{2}m_1v_1^2\\\Rightarrow K=\frac{1}{2}0.3\times 0.27^2\\\Rightarrow K=0.010935\ J

Final kinetic energy of first glider is 0.010935 J

K=\frac{1}{2}m_2v_2^2\\\Rightarrow K=\frac{1}{2}0.15\times 1.07^2\\\Rightarrow K=0.0858675\ J

Final kinetic energy of second glider is 0.0858675 J

6 0
2 years ago
a pitcher threw a baseball straight up at 35.8 meters per second. what is the ball's velocity after 2.50 seconds?
Andrei [34K]
Ok the velocity of an object in free fall is given by the equation :

v=v0-gt, where v0 is the original velocity, g is the gravitational constant (9.8 m/s^2) and t is the time. 

so, we substitute values into this equation. v=35.8-9.8*2.5; v=11.3 m/s
5 0
2 years ago
An ideal gas is contained in a vessel at 300 K. The temperature of the gas is then increased to 900 K. (i) By what factor does t
Dahasolnce [82]

The question is missing some parts. Here is the complete question.

An ideal gas is contained in a vessel at 300K. The temperature of the gas is then increased to 900K.

(i) By what factor does the average kinetic energy of the molecules change, (a) a factor of 9, (b) a factor of 3, (c) a factor of \sqrt{3}, (d) a factor of 1, or (e) a factor of \frac{1}{3}?

Using the same choices in part (i), by what factor does each of the following change: (ii) the rms molecular speed of the molecules, (iii) the average momentum change that one molecule undergoes in a colision with one particular wall, (iv) the rate of collisions of molecules with walls, and (v) the pressure of the gas.

Answer: (i) (b) a factor of 3;

              (ii) (c) a factor of \sqrt{3};

              (iii) (c) a factor of \sqrt{3};

             (iv) (c) a factor of \sqrt{3};

              (v) (e) a factor of 3;

Explanation: (i) Kinetic energy for ideal gas is calculated as:

KE=\frac{3}{2}nRT

where

n is mols

R is constant of gas

T is temperature in Kelvin

As you can see, kinetic energy and temperature are directly proportional: when tem perature increases, so does energy.

So, as temperature of an ideal gas increased 3 times, kinetic energy will increase 3 times.

For temperature and energy, the factor of change is 3.

(ii) Rms is root mean square velocity and is defined as

V_{rms}=\sqrt{\frac{3k_{B}T}{m} }

Calculating velocity for each temperature:

For 300K:

V_{rms1}=\sqrt{\frac{3k_{B}300}{m} }

V_{rms1}=30\sqrt{\frac{k_{B}}{m} }

For 900K:

V_{rms2}=\sqrt{\frac{3k_{B}900}{m} }

V_{rms2}=30\sqrt{3}\sqrt{\frac{k_{B}}{m} }

Comparing both veolcities:

\frac{V_{rms2}}{V_{rms1}}= (30\sqrt{3}\sqrt{\frac{k_{B}}{m} }) .\frac{1}{30} \sqrt{\frac{m}{k_{B}} }

\frac{V_{rms2}}{V_{rms1}}=\sqrt{3}

For rms, factor of change is \sqrt{3}

(iii) Average momentum change of molecule depends upon velocity:

q = m.v

Since velocity has a factor of \sqrt{3} and velocity and momentum are proportional, average momentum change increase by a factor of

(iv) Collisions increase with increase in velocity, which increases with increase of temperature. So, rate of collisions also increase by a factor of \sqrt{3}.

(v) According to the Pressure-Temperature Law, also known as Gay-Lussac's Law, when the volume of an ideal gas is kept constant, pressure and temperature are directly proportional. So, when temperature increases by a factor of 3, Pressure also increases by a factor of 3.

4 0
2 years ago
A group of students prepare for a robotic competition and build a robot that can launch large spheres of mass M in the horizonta
Dvinal [7]
Nobody will do that for 5 points loll
8 0
2 years ago
A runner runs around the track consisting of two parallel lines 96 m long connected at the ends by two semi circles with a radiu
Zielflug [23.3K]
-0 m/s
- average velocity=displacement/time
- the runners displacement is zero so her average velocity must be zero
7 0
2 years ago
Other questions:
  • The reaction energy of a reaction is the amount of energy released by the reaction. It is found by determining the difference in
    14·1 answer
  • John is running down the street and hears dogs barking in the distance. How do the sound waves change as John approaches the bar
    12·1 answer
  • A basketball player standing up with the hoop launches the ball straight up with an initial velocity of v_o = 3.75 m/s from 2.5
    5·1 answer
  • Boat A and Boat B have the same mass. Boat A's velocity is three times greater than that of Boat B. Compared to
    7·1 answer
  • An astronaut is floating happily outside her spaceship, which is orbiting the earth at a distance above the earths surface equal
    11·1 answer
  • THE RELATIVE ANGLE AT THE KNEE CHANGES FROM 0O TO 85O DURING THE KNEE FLEXION PHASE OF A SQUAT EXERCISE. IF 10 COMPLETE SQUATS A
    13·1 answer
  • If the 20-mm-diameter rod is made of A-36 steel and the stiffness of the spring is k = 61 MN/m , determine the displacement of e
    12·1 answer
  • A skier uses a pair of poles to push himself down a ski slope. Which of the following correctly states when the skier has the mo
    11·1 answer
  • (b) The density of aluminum is 2.70 g/cm3. The thickness of a rectangular sheet of aluminum foil varies
    5·1 answer
  • A student determines the density, solubility, and boiling point of two liquids, Liquid 1 and Liquid 2. Then he stirs the two liq
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!