Answer:
T₂ = 111.57 °C
Explanation:
Given that
Initial pressure P₁ = 9.8 atm
T₁ = 32°C = 273 + 32 =305 K
The final pressure P₂ = 11.2 atm
Lets take the final temperature = T₂
We know that ,the ideal gas equation
If the volume of the gas is constant ,then we can say that


Now by putting the values in the above equation ,we get


T₂ = 384.57 - 273 °C
T₂ = 111.57 °C
There could be a little bit of conduction through the air that's between the soup and your hand. But it's very small, because air is not a good conductor of heat.
It's mostly <em>convection</em> ... hot air and steam rising from the soup to your hand.
Then, of course, there HAS to be some conduction when the hot gases reach your hand ... their heat has to soak into your skin, and that's conduction.
A complex entity involving the Earth's biosphere, atmosphere, oceans, and soil; the totality constituting a feedback or cybernetic system which seeks an optimal physical and chemical environment for life on this planet
Answer:
<em>The Answer is both B and C, </em><em>since it has same options from the question given. Gear, slow her vehicle in a lower</em>
Explanation:
<em>The use of a lower gear in a vehicle helps a person to control their speed limits, when approaching a hill. it also saves the brakes too, using the brakes down a hill can overheat the gear and causes brake failures</em>
<em>By changing in into a lower gear and also letting the engine to do the brake work in a vehicle, the engine will absorb a force and slow the vehicle down, but in most cases brakes can be applied but with lesser pressure.</em>
<em>In this case Stella need to slow down by applying her lower gear down a hill to avoid accidents on the road, by controlling her speed limits and for safety precaution</em>
To solve this problem it is necessary to apply the concepts related to the heat flux rate expressed in energetic terms. The rate of heat flow is the amount of heat that is transferred per unit of time in some material. Mathematically it can be expressed as:

Where
k = 0.84 J/s⋅m⋅°C (The thermal conductivity of the material)
Area
Length
= Temperature of the "hot"reservoir
= Temperature of the "cold"reservoir
Replacing with our values we have that,



Therefore the correct answer is B.