answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lera25 [3.4K]
1 year ago
13

Find the time t2 that it would take the charge of the capacitor to reach 99.99% of its maximum value given that r=12.0ω and c=50

0μf.
Physics
1 answer:
defon1 year ago
8 0

Answer:

Explanation:

Given that, .

R = 12 ohms

C = 500μf.

Time t =? When the charge reaches 99.99% of maximum

The charge on a RC circuit is given as

A discharging circuit

Q = Qo•exp(-t/RC)

Where RC is the time constant

τ = RC = 12 × 500 ×10^-6

τ = 0.006 sec

The maximum charge is Qo,

Therefore Q = 99.99% of Qo

Then, Q = 99.99/100 × Qo

Q = 0.9999Qo

So, substituting this into the equation above

Q = Qo•exp(-t/RC)

0.9999Qo = Qo•exp(-t / 0.006)

Divide both side by Qo

0.9999 = exp(-t / 0.006)

Take In of both sodes

In(0.9999) = In(exp(-t / 0.006))

-1 × 10^-4 = -t / 0.006

t = -1 × 10^-4 × - 0.006

t = 6 × 10^-7 second

So it will take 6 × 10^-7 a for charge to reached 99.99% of it's maximum charge

You might be interested in
Two objects are placed in thermal contact and are allowed to come to equilibrium in isolation. The heat capacity of Object A is
Oksi-84 [34.3K]

Answer:

Explanation:

Heat capacity A = 3 x heat capacity of B

initial temperature of A = 2 x initial temperature of B

TA = 2 TB

Let T be the final temperature of the system

Heat lost by A is equal to the heat gained by B

mass of A x specific heat of A x (TA - T) = mass of B x specific heat of B x ( T - TB)

heat capacity of A x ( TA - T) = heat capacity of B x ( T - TB)

3 x heat capacity of B x ( TA - T) = heat capacity of B x ( T - TB)

3 TA - 3 T = T - TB

6 TB + TB = 4 T

T = 1.75 TB

8 0
2 years ago
When Earth’s Northern Hemisphere is tilted toward the Sun during June, some would argue that the cause of our seasons is that th
Ludmilka [50]

Answer:

Distance of Earth from the Sun has nothing to do with the seasons only the tilt is responsible for the change in seasons.

Explanation:

The Earth's tilt does cause the seasons but the distance from the sun and has nothing to do with the change in seasons. In June, when the Northern Hemisphere is tilted in the direction of the Sun during the Northern Hemisphere summer the Earth is actually farthest from the Sun. In January, when the Southern Hemisphere is tilted in the direction of the Sun during the Northern Hemisphere winter the Earth is actually closest to the Sun. This is caused due to the elliptical orbit of the Earth. So, distance of Earth from the Sun has nothing to do with the seasons.

4 0
2 years ago
Based on the free-body diagram, the net force acting on this wheelbarrow is {blank} N.
Semenov [28]

Answer:

diagram?

Explanation:

5 0
2 years ago
Read 2 more answers
A system contains a perfectly elastic spring, with an unstretched length of 20 cm and a spring constant of 4 N/cm.
mote1985 [20]

Answer:

a) When its length is 23 cm, the elastic potential energy of the spring is

0.18 J

b) When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J

Explanation:

Hi there!

a) The elastic potential energy (EPE) is calculated using the following equation:

EPE = 1/2 · k · x²

Where:

k = spring constant.

x = stretched lenght.

Let´s calculate the elastic potential energy of the spring when it is stretched 3 cm (0.03 m).

First, let´s convert the spring constant units into N/m:

4 N/cm · 100 cm/m = 400 N/m

EPE = 1/2 · 400 N/m · (0.03 m)²

EPE = 0.18 J

When its length is 23 cm, the elastic potential energy of the spring is 0.18 J

b) Now let´s calculate the elastic potential energy when the spring is stretched 0.06 m:

EPE = 1/2 · 400 N/m · (0.06 m)²

EPE = 0.72 J

When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J

7 0
2 years ago
The diagram shows a heat engine. In which area of the diagram is unusable thermal energy detected?
Marat540 [252]
Nope, I disagree with the former answer. The answer is definitely Z. <u>W area</u> (boxed with red outline) is represented as the hot reservoir while <u>Z area</u> is the cold reservoir (boxed with blue outline). X area is the heat engine itself and Y area is the work produced from thermal energy from hot reservoir. Typically, all heat engines lose some heat to the environment (based from the second law of thermodynamics) that is symbolically illustrated by the lost energy in the cold reservoir. This lost thermal energy is basically the unusable thermal energy. The higher thermal energy lost, the less efficient your heat engine is. 
7 0
2 years ago
Read 2 more answers
Other questions:
  • A CCD has a greatest possible pixel value of 4095. what is the bit level of this CCD?
    5·1 answer
  • Ali hypothesized that increasing fertilizer would increase plant growth. Four groups of thirty similar plants were given 0 to 15
    7·2 answers
  • What is the final speed if the displacement is increased by a factor of 4?
    12·1 answer
  • A spaceship is travelling at 20,000.0 m/s. After 5.0 seconds, the rocket thrusters are turned on. At the 55.0 second mark, the s
    9·1 answer
  • A power washer is being used to clean the siding of a house. Water enters at 20 C, 1 atm, with a volumetric flow rate of 0.1 lit
    13·1 answer
  • A parallel-plate capacitor with a 4.9 mm plate separation is charged to 57 V . Part A With what kinetic energy, in eV, must a pr
    13·1 answer
  • The National High Magnetic Field Laboratory once held the world record for creating the strongest magnetic field. Their largest
    5·1 answer
  • In an experiment, a torque of a known magnitude is exerted along the edge of a rotating disk. The disk rotates about its center.
    6·1 answer
  • Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
    15·1 answer
  • Kayla and her friends are setting up chairs for a school play each row will contain the same number of chairs Kayla knows that t
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!