Answer:
The distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>
Explanation:
As it is given that the Neptune's orbit is circular, the formula that we have to use is the circumference of a circle in order to find the distance it travels in a single orbit around the Sun. In other words, you can say that the circumference of the circle is <em>equivalent</em> to the distance it travels around the Sun in a single orbit.
<em>The circumference of the circle = Distance Travelled (in a single orbit) = 2*π*R ---- (A)</em>
Where,
<em>R = Orbital radius (in this case) = 30.1 AU</em>
<em />
Plug the value of R in the equation (A):
<em>(A) => The circumference of the circle = 2*π*(30.1)</em>
<em> The circumference of the circle = </em><em>60.2π</em>
Therefore, the distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>
Answer:
i(t) = (E/R)[1 - exp(-Rt/L)]
Explanation:
E−vR−vL=0
E− iR− Ldi/dt = 0
E− iR = Ldi/dt
Separating te variables,
dt/L = di/(E - iR)
Let x = E - iR, so dx = -Rdi and di = -dx/R substituting for x and di we have
dt/L = -dx/Rx
-Rdt/L = dx/x
interating both sides, we have
∫-Rdt/L = ∫dx/x
-Rt/L + C = ㏑x
x = exp(-Rt/L + C)
x = exp(-Rt/L)exp(C) A = exp(C) we have
x = Aexp(-Rt/L) Substituting x = E - iR we have
E - iR = Aexp(-Rt/L) when t = 0, i(0) = 0. So
E - i(0)R = Aexp(-R×0/L)
E - 0 = Aexp(0) = A × 1
E = A
So,
E - i(t)R = Eexp(-Rt/L)
i(t)R = E - Eexp(-Rt/L)
i(t)R = E(1 - exp(-Rt/L))
i(t) = (E/R)(1 - exp(-Rt/L))
Answer:
Rod 1 has greater initial angular acceleration; The initial angular acceleration for rod 1 is greater than for rod 2.
Explanation:
For the rod 1 the angular acceleration is
Similarly, for rod 2

Now, the moment of inertia for rod 1 is
,
and the torque acting on it is (about the center of mass)

therefore, the angular acceleration of rod 1 is


Now, for rod 2 the moment of inertia is


and the torque acting is (about the center of mass)


therefore, the angular acceleration
is


We see here that

therefore

In other words , the initial angular acceleration for rod 1 is greater than for rod 2.
Answer:

Explanation:
We are given that
Linear charge density of wire=
Radius of hollow cylinder=R
Net linear charge density of cylinder=
We have to find the expression for the magnitude of the electric field strength inside the cylinder r<R
By Gauss theorem



Where surface area of cylinder=
