Answer:

Given:
Object distance (u) = 25.0 cm
Image distance (v) = -50.0 cm
To Find:
Magnification (m)
Explanation:

Substituting values of Image distance(v) & Object distance (u) in the equation:

-(-50) = 50:



Answer:
The magnitude of the average force exerted by the club on the ball during contact = mv/t
Explanation:
Impulse exerted on the ball = Momentum of the ball = mass * velocity = m*v
As we know,
m*v = Integration of F.dt with limits 0 to T
Ft = mv
F = mv/t
The magnitude of the average force exerted by the club on the ball during contact = mv/t
The force exerted on the car during this stop is 6975N
<u>Explanation:</u>
Given-
Mass, m = 930kg
Speed, s = 56km/hr = 56 X 5/18 m/s = 15m/s
Time, t = 2s
Force, F = ?
F = m X a
F = m X s/t
F = 930 X 15/2
F = 6975N
Therefore, the force exerted on the car during this stop is 6975N
The relationship between resistance R and resistivity

is

where L is the length of the wire and A its cross section.
The radius of the wire is half the diameter:

and the cross section is

From the first equation, we can then find the length of the wire when

(copper resistivity:

)