Explanation:
Given that,
Initial volume of tank, V = 6 L
Initial pressure, P = 2 atm
We need to find the final pressure when the air is placed in tanks that have the following volumes if there is no change in temperature and amount of gas:
(a) V' = 1 L
It is a case of Boyle's law. It says that volume is inversely proportional to the pressure at constant temperature. So,

(b) V' = 2500 mL
New pressure becomes :

(c) V' = 750 mL
New pressure becomes :

(d) V' = 8 L
New pressure becomes :

Hence, this is the required solution.
Answer: 1. decreasing the mass of both objects
2. decreasing the mass of one of the objects
3. increasing the distance between the objects
Explanation: Hope that helped! (:
Answer:
35 m/s down
Explanation:
The horizontal speed of the package is 70 m/s. So the time needed to reach the hikers is:
1000 m / (70 m/s) = 14.28 s
Taking down to be positive, the initial velocity needed is:
Δy = v₀ t + ½ at²
1500 m = v₀ (14.28 s) + ½ (9.8 m/s²) (14.28 s)²
v₀ = 35 m/s
The package must be launched down with an initial velocity of 35 m/s.
Answer:
The plate's surface charge density is 
Explanation:
Given that,
Speed = 9800 km/s
Distance d= 75 cm
Distance d' =15 cm
Suppose we determine the plate's surface charge density?
We need to calculate the surface charge density
Using work energy theorem


Here, final velocity is zero
...(I)
We know that,


...(II)
From equation (I) and (II)

Charge is negative for electron

Put the value into the formula


Hence, The plate's surface charge density is 