answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
never [62]
2 years ago
13

A projectile of mass m is fired horizontally with an initial speed of v0​ from a height of h above a flat, desert surface. Negle

cting air friction, at the instant before the projectile hits the ground, find the following in terms of m, v0​, h, and g : Are any of the answers changed if the initial angle is changed?
Physics
1 answer:
Grace [21]2 years ago
5 0

Complete question is;

A projectile of mass m is fired horizontally with an initial speed of v0 from a height of h above a flat, desert surface. Neglecting air friction, at the instant before the projectile hits the ground, find the following in terms of m, v0, h and g:

(a) the work done by the force of gravity on the projectile,

(b) the change in kinetic energy of the projectile since it was fired, and

(c) the final kinetic energy of the projectile.

(d) Are any of the answers changed if the initial angle is changed?

Answer:

A) W = mgh

B) ΔKE = mgh

C) K2 = mgh + ½mv_o²

D) No they wouldn't change

Explanation:

We are expressing in terms of m, v0​, h, and g. They are;

m is mass

v0 is initial velocity

h is height of projectile fired

g is acceleration due to gravity

A) Now, the formula for workdone by force of gravity on projectile is;

W = F × h

Now, Force(F) can be expressed as mg since it is force of gravity.

Thus; W = mgh

Now, there is no mention of any angles of being fired because we are just told it was fired horizontally.

Therefore, even if the angle is changed, workdone will not change because the equation doesn't depend on the angle.

B) Change in kinetic energy is simply;

ΔKE = K2 - K1

Where K2 is final kinetic energy and K1 is initial kinetic energy.

However, from conservation of energy, we now that change in kinetic energy = change in potential energy.

Thus;

ΔKE = ΔPE

ΔPE = U2 - U1

U2 is final potential energy = mgh

U1 is initial potential energy = mg(0) = 0. 0 was used as h because at initial point no height had been covered.

Thus;

ΔKE = ΔPE = mgh

Again like a above, the change in kinetic energy will not change because the equation doesn't depend on the angle.

C) As seen in B above,

ΔKE = ΔPE

Thus;

½mv² - ½mv_o² = mgh

Where final kinetic energy, K2 = ½mv²

And initial kinetic energy = ½mv_o²

Thus;

K2 = mgh + ½mv_o²

Similar to a and B above, this will not change even if initial angle is changed

D) All of the answers wouldn't change because their equations don't depend on the angle.

You might be interested in
If a rock is thrown upward on the planet mars with a velocity of 11 m/s, its height (in meters) after t seconds is given by h =
Butoxors [25]
(a) 3.56 m/s 
(b) 11 - 3.72a 
(c) t = 5.9 s 
(d) -11 m/s  
For most of these problems, you're being asked the velocity of the rock as a function of t, while you've been given the position as a function of t. So first calculate the first derivative of the position function using the power rule. 
y = 11t - 1.86t^2 
y' = 11 - 3.72t 
Now that you have the first derivative, it will give you the velocity as a function of t. 
(a) Velocity after 2 seconds. 
y' = 11 - 3.72t 
y' = 11 - 3.72*2 = 11 - 7.44 = 3.56 
So the velocity is 3.56 m/s  
(b) Velocity after a seconds. 
y' = 11 - 3.72t 
y' = 11 - 3.72a  
So the answer is 11 - 3.72a  
(c) Use the quadratic formula to find the zeros for the position function y = 11t-1.86t^2. Roots are t = 0 and t = 5.913978495. The t = 0 is for the moment the rock was thrown, so the answer is t = 5.9 seconds.  
(d) Plug in the value of t calculated for (c) into the velocity function, so: 
y' = 11 - 3.72a
 y' = 11 - 3.72*5.913978495
 y' = 11 - 22
 y' = -11 
 So the velocity is -11 m/s which makes sense since the total energy of the rock will remain constant, so it's coming down at the same speed as it was going up.
3 0
2 years ago
1. Do alto de uma plataforma com 15m de altura, é lançado horizontalmente um projéctil. Pretende-se atingir um alvo localizado n
sveta [45]

Answer:

(a). The initial velocity is 28.58m/s

(b). The speed when touching the ground is 33.3m/s.

Explanation:

The equations governing the position of the projectile are

(1).\: x =v_0t

(2).\: y= 15m-\dfrac{1}{2}gt^2

where v_0 is the initial velocity.

(a).

When the projectile hits the 50m mark, y=0; therefore,

0=15-\dfrac{1}{2}gt^2

solving for t we get:

t= 1.75s.

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

50m = v_0(1.75s)

which gives

\boxed{v_0 = 28.58m/s.}

(b).

The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

v_x = 28.58m/s.

the vertical component of the velocity is

v_y = gt \\v_y = (9.8m/s^2)(1.75s)\\\\{v_y = 17.15m/s.

which gives a speed v of

v = \sqrt{v_x^2+v_y^2}

\boxed{v =33.3m/s.}

4 0
2 years ago
Whipple is confused about the connection between the velocity and acceleration of the tennis ball. he decides to compare the vel
tamaranim1 [39]

The speed of the ball is always zero and the acceleration is always -g when it reaches the top of its motion. This is because when the ball is free, only gravity acts on it which is always downwards, hence g is the net acceleration and it is always negative. However the velocity does not direction change instantly, negative acceleration first slows down the ball with a positive velocity, until that point the ball keeps moving up, then the ball velocity becomes zero just before changing direction and becoming negative after which the ball will now go down along gravity. Hence the ball velocity is zero at the top (neither going up nor down). Mathematically this can be seen as velocity is the integration of acceleration.

7 0
2 years ago
You are driving on the highway, and you come to a steep downhill section. As you roll down the hill, you take your foot off the
Natasha2012 [34]

Answer:

air

Explanation:

The car is being slowed down by air.

5 0
2 years ago
Read 2 more answers
A sister spins her brother in a circle of radius R at angular speed wi. Then the sister decreases her angular speed
Igoryamba

Answer:

The change in the centripetal acceleration of the brother,

                               Δa = V₂²/R - V₁²/R

Explanation:

Given data,

A sister spins her brother in a circle of radius, R

The angular velocity of the brother, ω₁ = V₁/R

The angular velocity of the brother, ω₂ = V₂/R

The centripetal acceleration is given by the relation

                                 a = V²/R

Therefore change in the centripetal acceleration of the brother,

                              Δa = V₂²/R - V₁²/R                                    

6 0
2 years ago
Other questions:
  • You throw a baseball straight up into the air with a speed of 24.5 m/s. How long does it take the baseball to reach its highest
    13·2 answers
  • A mercury thermometer has a glass bulb of interior volume 0.100 cm3 at 10°c. the glass capillary 10) tube above the bulb has an
    7·2 answers
  • A rectangular beam 10 cm wide, is subjected to a maximum shear force of 50000 N, the corresponding maximum shear stress being 3
    13·1 answer
  • Recent findings in astrophysics suggest that the observable universe can be modeled as a sphere of radius R = 13.7 × 109 light-y
    13·1 answer
  • A physics professor wants to perform a lecture demonstration of Young's double-slit experiment for her class using the 633-nm li
    7·1 answer
  • Harmonics problem. A square wave of frequency f contains harmonics (sine waves) at f, 3f, 5f, 7f, ... . Suppose a system respond
    6·1 answer
  • Two forces, F⃗ 1F→1F_1_vec and F⃗ 2F→2F_2_vec, act at a point,F⃗ 1F→1F_1_vec has a magnitude of 8.80 NN and is directed at an an
    13·1 answer
  • An x-ray tube is an evacuated glass tube that produces electrons at one end and then accelerates them to very high speeds by the
    13·1 answer
  • The difference between the two molar specific heats of a gas is 8000J/kgK. If the ratio of the two specific heats is 1.65, calcu
    5·1 answer
  • The diagram shows a heater above a thermometer. The thermometer bulb is in the position shown. Which row shows how the heat ener
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!