answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ahrayia [7]
1 year ago
13

How much heat is released when 432 g of water cools down from 71'c to 18'c?

Physics
1 answer:
maria [59]1 year ago
7 0
The heat released by the water when it cools down by a temperature difference \Delta T is
Q=mC_s \Delta T
where
m=432 g is the mass of the water
C_s = 4.18 J/g^{\circ}C is the specific heat capacity of water
\Delta T =71^{\circ}C-18^{\circ}C=53^{\circ} is the decrease of temperature of the water

Plugging the numbers into the equation, we find
Q=(432 g)(4.18 J/g^{\circ}C)(53^{\circ}C)=9.57 \cdot 10^4 J
and this is the amount of heat released by the water.
You might be interested in
A biophysics experiment uses a very sensitive magnetic field probe to determine the current associated with a nerve impulse trav
fenix001 [56]

Answer:

The peak current carried by the axon is 5.85 x 10⁻⁸ A

Explanation:

Given;

distance of the field from the axon, r = 1.3 mm

peak magnetic field strength, B = 9 x 10⁻¹² T

To determine the peak current carried by the axon, apply the following equation;

B = \frac{\mu I}{2\pi r}

where;

B is the peak magnetic field

r is the distance of the magnetic field from axon

μ is permeability of free space = 4π x 10⁻⁷

I is the peak current

Re-arrange the equation and solve for "I"

B = \frac{\mu I}{2\pi r} \\\\I = \frac{B*2\pi r}{\mu} \\\\I = \frac{9*10^{-12}*2*\pi *1.3*10^{-3}}{4\pi *10^{-7}} \\\\I = 5.85 *10^{-8} \ A

Therefore, the peak current carried by the axon is 5.85 x 10⁻⁸ A

7 0
1 year ago
An ice rescue team pulls a stranded hiker off a frozen lake by throwing him a rope and pulling him horizontally across the essen
Anuta_ua [19.1K]

Answer:T=116.84 N

Explanation:

Given

Weight of hiker =1040 N

acceleration a=1.1 m/s^2

Force exerted by Rope is equal to Tension in the rope

F_{net}=T=ma_{net}

T=\frac{1040}{g}\times 1.1

T=116.84 N

8 0
2 years ago
Military specifications often call for electronic devices to be able to withstand accelerations of 10 g. to make sure that their
trapecia [35]
The solution for this problem is:
(10 x 9.8) = 98.1 m/sec^2 acceleration. Time, to travel 9.4cm or (.094m.), at acceleration of 98m/sec^2

= sqrt(2d/a), = sqrt (98.1 m/sec^2/0.094m) = 32.3050619 sec per cycle

Frequency = (w/2pi), = 32.3050619/2pi
= 32.3050619/6.28318531
= 5.14 Hz would be the answer
6 0
1 year ago
A 125-g metal block at a temperature of 93.2 °C was immersed in 100. g of water at 18.3 °C. Given the specific heat of the metal
Nataly_w [17]

Answer:

34.17°C

Explanation:

Given:

mass of metal block = 125 g

initial temperature T_i = 93.2°C

We know

Q = m c \Delta T   ..................(1)

Q= Quantity of heat

m = mass of the substance

c = specific heat capacity

c = 4.19 for H₂O in J/g^{\circ}C

\Delta T = change in temperature

Now

The heat lost by metal = The heat gained by the metal

Heat lost by metal = 125\times 0.9\times (93.2-T_f)

Heat gained by the water = 100\times 4.184\times(T_f -18.3)

thus, we have

125\times 0.9\times (93.2-T_f) = 100\times 4.184\times(T_f -18.3)

10485-112.5T_f = 418.4T_f - 7656.72

⇒ T_f = 34.17^oC

Therefore, the final temperature will be = 34.17°C

6 0
2 years ago
What is the magnitude of the relative angle φ
melomori [17]

Complete question is;

A ski jumper travels down a slope and leaves the ski track moving in the horizontal direction with a speed of 24 m/s. The landing incline below her falls off with a slope of θ = 59◦ . The acceleration of gravity is 9.8 m/s².

What is the magnitude of the relative angle φ with which the ski jumper hits the slope? Answer in units of ◦

Answer:

14.08°

Explanation:

The time covered will be given by the formula;

t = (2V_x•tan θ)/g

t = (2 × 24 × tan 59)/9.8

t = 8.152 s

Now, the slope of the flight path at the point of impact will be given by the formula;

tan α = V_y/V_x

We are given V_x = 24 m/s

V_y will be gotten from the formula;

v = gt

Thus;

V_y = gt

V_y = 9.8 × (8.152) = 78.89 m/s

Thus;

tan α = 78.89/24

tan α = 3.2871

α = tan^(-1) 3.2871

α = 73.08°

Thus ;

Relative angle φ = α - θ = 73.08 - 59 = 14.08°

6 0
1 year ago
Other questions:
  • Consider two objects whose masses are 100 g and 200 g. The smaller object strikes the larger object with a force of 500 N. Accor
    11·2 answers
  • Camping equipment weighing 6000 n is pulled across a frozen lake by means of a horizontal rope. the coefficient of kinetic frict
    9·1 answer
  • Dao makes a table to identify the variables used in the equations for centripetal acceleration.
    8·2 answers
  • 1) A star burst can be defined as stars formed from recycled dead star materials.
    10·1 answer
  • 3. If you are playing seesaw with your younger sister who weighs
    7·1 answer
  • A 50-kg meteorite moving at 1000 m/s strikes Earth. Assume the velocity is along the line joining Earth's center of mass and the
    13·1 answer
  • In the past, salmon would swim more than 1130 km (700 mi) to spawn at the headwaters of the Salmon River in central Idaho. The t
    7·1 answer
  • The National High Magnetic Field Laboratory once held the world record for creating the strongest magnetic field. Their largest
    5·1 answer
  • In this problem, you will calculate the location of the center of mass for the Earth-Moon system, and then you will calculate th
    14·1 answer
  • Anita is comparing the accepted value for a physical property to the value she measured in the laboratory. Which characteristic
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!