Answer: displacement of airplane is 172 km in direction 34.2 degrees East of North
Explanation:
In constructing the two displacements it is noticed that the angle between the 75 km vector and the 155 km vector is a right angle (90 degrees).
Hence if the plane starts out at A, it travels to B, 75 km away, then turns 90 degrees to the right (clockwise) and travels to C, 155 km away from B. Angle ABC is 90 degrees, hence we can use Pythagoras theorem to solve for AC
AC2 = AB2 + BC2 ; AC^2 = 752 + 1552 ; from this we get AC = 172 km (3 significant figures)
Angle BAC = Tan-1(155/75) ; giving angle BAC = 64.2 degrees
Hence AC is in a direction (64.2 - 30) = 34.2 degrees East of North
Therefore the displacement of the airplane is 172 km in a direction 34.2 degrees East of North
Answer:
x = 11.23 m
Explanation:
For this interesting exercise, we must use angular kinematics, linear kinematics and the relationship between angular and linear quantities.
Let's reduce to SI system units
θ = 155 rev (2pi rad / rev) = 310π rad
α = 2.00rev / s2 (2pi rad / 1 rev) = 4π rad / s²
Let's look for the angular velocity at the time the piece is released, with starting from rest the initial angular velocity is zero (wo = 0)
w² = w₀² + 2 α θ
w =√ 2 α θ
w = √(2 4pi 310pi)
w = 156.45 rad / s
The relationship between angular and linear velocity
v = w r
v = 156.45 0.175
v = 27.38 m / s
In this part we have the linear speed and the height that it travels to reach the floor, so with the projectile launch equations we can find the time it takes to arrive
y =
t - ½ g t²
As it leaves the highest point its speed is horizontal
y = 0 - ½ g t²
t = √ (-2y / g)
t = √ (-2 (-0.820) /9.8)
t = 0.41 s
With this time we calculate the horizontal distance, because the constant horizontal speed
x = vox t
x = 27.38 0.41
x = 11.23 m
Answer:
Speed = 0.296m/2
Period = 0.203 s
Explanation:
If by 'long' you mean the wavelength of the waves, then the wavelength
.
The frequency
of the waves is 14.8 waves every 3 seconds or
.
Now the relationship between wavelength
, frequency
and speed
of the waves is:

We put in the values
and
and get:
Now the period
is just the inverse of the frequency, or


Elastic potential = 1/2 x constant x square of compression lenght
So it's 360 N/m
IT IS EASIER TO CLIMB A SLANTED SLOPE