Answer:
335°C
Explanation:
Heat gained or lost is:
q = m C ΔT
where m is the mass, C is the specific heat capacity, and ΔT is the change in temperature.
Heat gained by the water = heat lost by the copper
mw Cw ΔTw = mc Cc ΔTc
The water and copper reach the same final temperature, so:
mw Cw (T - Tw) = mc Cc (Tc - T)
Given:
mw = 390 g
Cw = 4.186 J/g/°C
Tw = 22.6°C
mc = 248 g
Cc = 0.386 J/g/°C
T = 39.9°C
Find: Tc
(390) (4.186) (39.9 - 22.6) = (248) (0.386) (Tc - 39.9)
Tc = 335
B. The sound of the engine will get louder and the pitch higher.
The elements that is very good in
electrical conductivity are gold and copper: elements that is amphoteric are
copper, zinc, tin, lead, aluminum and beryllium: elements that is gaseous at
room temperature are hydrogen, nitrogen, oxygen, fluorine and chlorine: elements
that is solid at room temperature are all metal except mercury and perhaps some
unseen radioactive elements. Lastly, elements that is brittle are hydrogen,
carbon, nitrogen, oxygen, phosphorus, sulfur and selenium
Answer:
a) 
b) 
c) 
Explanation:
From the exercise we know that the ball strikes the building 16m away and its final height is 8m more than the initial
Being said that, we can calculate the initial velocity of the ball
a) First we analyze its horizontal motion


(1)
That would be our first equation
Now, we need to analyze its vertical motion


Knowing
in our first equation (1)


Solving for t

So, the ball takes to seconds to get to the other building. Now we can calculate its <u>initial velocity</u>

b) To find the <u>magnitude of the ball just before it strikes the building</u> we need to calculate its x and y components


So, the magnitude of the velocity is:

c) The <u><em>direction of the ball</em></u> is:

Answer:
a) Fc = 4.15 N, Fi = 435.65 N, (F1)a = 640 N, and F2 = 239.6 N,
b) Ha = 1863.75 N, nfs = 1 , length = 11.8 mm
Explanation:
Given that:
γ= 9.5 kN/m³ = 9500N/m3
b = 6 inches = 0.1524 m
t = 0.0013 mm
d = 2 inches = 0.0508 m
n = 1750 rpm

L = 9 ft = 2.7432 m
Ks = 1.25
g = 9.81 m/s²
a)







b)


dip = 