answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
torisob [31]
2 years ago
6

A stone is held at a height h above the ground. A second stone with four times the mass of the first one is held at the same hei

ght. The gravitational potential energy of the second stone compared to that of the first stone is
Physics
1 answer:
QveST [7]2 years ago
5 0

gravitational potential energy is given by formula

U = mgh

here we need to compare the gravitational potential energy of stone 2 with respect to stone 1

so we will say

\frac{U_2}{U_1} = \frac{m_2gh}{m_1gh}

\frac{U_2}{U_1} =\frac{m_2}{m_1}

given that

m_2 = 4 m_1

now we have

\frac{U_2}{U_1} = 4

You might be interested in
A yo-yo can be thought of as a solid cylinder of mass m and radius r that has a light string wrapped around its circumference (s
lbvjy [14]

Answer:

6.5 m/s^2

Explanation:

The net force acting on the yo-yo is

F_net = mg-T

ma=mg-T

now T= mg-ma

net torque acting on the yo-yo is

τ_net = Iα

I= moment of inertia (= 0.5 mr^2 )

α = angular acceleration

τ_net = 0.5mr^2(a/r)

Tr= 0.5mr^2(a/r)

(mg-ma)r=0.5mr^2(a/r)

a(1/2+1)=g

a= 2g/3

a= 2×9.8/3 = 6.5 m/s^2

4 0
2 years ago
A boy on a bicycle approaches a brick wall as he sounds his horn at a frequency 400 hz. the sound he hears reflected back from t
Mashutka [201]
As the question is about changing in frequency of a wave for an observer who is moving relative to the wave source, the concept that should come to our minds is "Doppler's effect."

Now the general formula of the Doppler's effect is:
f = (\frac{g + v_{r}}{g + v_{s}})f_{o} -- (A)

Note: We do not need to worry about the signs, as everything is moving towards each other. If something/somebody were moving away, we would have the negative sign. However, in this problem it is not the issue.

Where,
g = Speed of sound = 340m/s.
v_{r} = Velocity of the receiver/observer relative to the medium = ?.
v_{s} = Velocity of the source with respect to medium = 0 m/s.
f_{o} =  Frequency emitted from source = 400 Hz.
f = Observed frequency = 408Hz.

Plug-in the above values in the equation (A), you would get:

408 = ( \frac{340 + v_{r}}{340 + 0})*400

\frac{408}{400} =  \frac{340 + v_{r}}{340}

Solving above would give you,
v_{r} = 6.8 m/s

The correct answer = 6.8m/s



7 0
2 years ago
Barker is unloading 20kg bottles of water from this delivery truck when one of the bottles tips over and slides down the truck r
Degger [83]
<span>The overall force that is acting on the bottle is gravity. With the incline being 30 degrees the full force of gravity isn't acting on the bottle becuase the ramp isn't allowing the bottle to go straight down. By taking the sin of 30 degrees you find the proportion of gravity that is acting on the bottle to be 4.9 meters per second and the bottle weights 20 kg so the force acting on the bottle is 98 Newtons.</span>
8 0
2 years ago
An elementary particle of mass m completely absorbs a photon, after which its mass is 1.01m. (a) what was the energy of the inco
sdas [7]
A.) We use the famous equation proposed by Albert Einstein written below:

E = Δmc²
where
E is the energy of the photon
Δm is the mass defect, or the difference of the mass before and after the reaction
c is the speed of light equal to 3×10⁸ m/s

Substituting the value:

E = (1.01m - m)*(3×10⁸ m/s) = 0.01mc² = 3×10⁶ Joules

b) The actual energy may be even greater than 3×10⁶ Joules because some of the energy may have been dissipated. Not all of the energy will be absorbed by the photon. Some energy would be dissipated to the surroundings.
8 0
2 years ago
A worker stands still on a roof sloped at an angle of 35° above the horizontal. He is prevented from slipping by static friction
aleksley [76]

Answer:

99.63 kg

Explanation:

From the force diagram

N = normal force on the worker from the surface of the roof

f = static frictional force = 560 N

θ = angle of the slope = 35

m = mass of the worker

W = weight of the worker = mg

W Cosθ = Component of the weight of worker perpendicular to the surface of roof

W Sinθ = Component of the weight of worker parallel to the surface of roof

From the force diagram, for the worker not to slip, force equation must be

W Sinθ = f

mg Sinθ = f

m (9.8) Sin35 = 560

m = 99.63 kg

5 0
2 years ago
Other questions:
  • Find τf, the torque about point p due to the force applied by the achilles' tendon.
    11·1 answer
  • n a presentation about measuring mass, one of your classmates states, "Two objects of the same size will always have the same ma
    15·2 answers
  • An object moving at a constant velocity travels 274 m in 23 s. what is its velocity?
    9·2 answers
  • Select all that apply. Greenhouse gases _____. absorb solar energy absorb carbon dioxide release carbon dioxide are released dur
    7·1 answer
  • A 0.110 kg cube of ice (frozen water) is floating in glycerine. The glycerine is in a tall cylinder that has inside radius 3.70
    14·1 answer
  • A turntable of radius R1 is turned by a circular rubberroller of radius R2 in contact with it at their outeredges. What is the r
    7·1 answer
  • ery large accelerations can injure the body, especially if they last for a considerable length of time. One model used to gauge
    8·1 answer
  • A displacement vector points in a direction of θ = 23° left of the positive y-axis. The magnitude of this vector is D = 155 m. R
    12·1 answer
  • A stunt man projects himself horizontal from a height of 60m. He lands 150m away from where he was launched. How fast was he lau
    12·1 answer
  • A balky cow is leaving the barn as you try harder and harder to push her back in. In coordinates with the origin at the barn doo
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!