answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korolek [52]
2 years ago
9

The Lyman series comprises a set of spectral lines. All of these lines involve a hydrogen atom whose electron undergoes a change

in energy level, either beginning at the n = 1 level (in the case of an absorption line) or ending there (an emission line).
The inverse wavelengths for the Lyman series in hydrogen are given by:
1/λ = RH (1 - 1/n^2) ,
where n = 2, 3, 4, and the Rydberg constant RH = 1.097 x 10^7 m^−1. (Round your answers to at least one decimal place. Enter your answers in nm.)
(a) Compute the wavelength for the first line in this series (the line corresponding to n = 2).
(b) Compute the wavelength for the second line in this series (the line corresponding to n = 3).
(c) Compute the wavelength for the third line in this series (the line corresponding to n = 4).
(d) In which part of the electromagnetic spectrum do these three lines reside?
O visible light region
O infrared region
O ultraviolet region
O gamma ray region
O x-ray region
Physics
1 answer:
mihalych1998 [28]2 years ago
8 0

Answer:

a) 1.2*10^-7 m

b) 1.0*10^-7 m

c) 9.7*10^-8 m

d) ultraviolet region

Explanation:

To find the different wavelengths you use the following formula:

\frac{1}{\lambda}=R_H(1-\frac{1}{n^2})

RH: Rydberg constant = 1.097 x 10^7 m^−1.

(a) n=2

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(2)^2})=8227500m^{-1}\\\\\lambda=1.2*10^{-7}m

(b)

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(3)^2})=9751111,1m^{-1}\\\\\lambda=1.0*10^{-7}m

(c)

\frac{1}{\lambda}=(1.097*10^7m^{-1})(1-\frac{1}{(4)^2})=10284375m^{-1}\\\\\lambda=9.7*10^{-8}m

(d) The three lines belong to the ultraviolet region.

You might be interested in
Two blocks, 1 and 2, are connected by a rope R1 of negligible mass. A second rope R2, also of negligible mass, is tied to block
alekssr [168]

Answer:

Explanation:

Given

Two block are connected by rope R_1

R_2 rope is attached to block 2

suppose F_2 is a force applied to Rope R_2

Applied force F_2=Tension in Rope 2

F_2=(m_1+m_2)a---1

where a=acceleration of system

Tension in rope R_1 is denoted by F_1

F_1=m_1a---2

divide 1 and 2 we get

\frac{F_2}{F_1}=\frac{(m_1+m_2)a}{m_1a}

also m_1=2.11\cdot m_2

\frac{F_2}{F_1}=\frac{2.11m_2+m_2}{2.11m_2}

\frac{F_2}{F_1}=\frac{3.11}{2.11}

\frac{F_1}{F_2}=\frac{2.11}{3.11}

               

3 0
2 years ago
A lead fishing weight of mass 0.2 kg is tied to a fishing line that is 0.5 m long. the weight is then whirled in a vertical circ
Mariana [72]
In the movement of the weight in vertical circle, using momentum balance, the largest tension is at the bottom of the circle. This is represented by: 

<span>F = T - m g </span>
<span>T = F + m g 
</span>F (centripetal) = mv^2/r
<span>= m v^2 / r + m g </span>

<span>m v^2 / r = T - m g </span>
<span>T= 0.5m * 100kgm/s^2 / 0.2kg - 9.81m/s^2 * 0.5m </span>
<span>T= 245 m^2/s^2 </span>


7 0
2 years ago
What is the porosity of the sand sample?(The sediment volume for each sample is 400ml.) a. 90.25% b. 72.00% c. 25.50% d. 16.75%
Katyanochek1 [597]
C.25.50% Hope this helps.
7 0
2 years ago
Read 2 more answers
4.A photon of green light strikes an unknown metal and an electron is emitted. The voltage is set to 2 volts. The electron canno
Anarel [89]
4) The correct answer is:
<span>B. An electron will be emitted in the second experiment, but it cannot be determined whether it will reach the second plate. 

In fact, violet light has higher frequency than green light. This means that photons of violet light carry more energy than photons of green light (remember that the energy of a photon is proportional to its frequency: </span>E=hf)<span>, so when they hit the surface of the metal, more energy is transferred to the electrons. The electron was already emitted with green light, so it must be emitted also with violet light, given the more energy transferred. The electron will also have more kinetic energy when hit by violet light, however, we cannot determine if it will reach the second plate, since we don't know how much energy has been used to extract the electron from the metal (in fact, we don't know the work function of the metal, i.e. the energy needed to extract the electron)


3)  The correct answer is
</span><span>A. Violet light will cause electrons to be emitted at greater velocities than those removed by green light.

In fact, </span>violet light has higher frequency than green light. This means that photons of violet light carry more energy than photons of green light (remember that the energy of a photon is proportional to its frequency: E=hf), so when they hit the surface of the metal, more energy is transferred to the electrons. Therefore, the emitted electrons will have on average greater energy (and so, greater velocity) than those removed by green light.
3 0
2 years ago
Jack pulls a sled across a level field by exerting a force of 110 n at an angle of 30 with the ground. what are the parallel and
Elina [12.6K]
<span>You are given an applied force of 110 n with an angle of 30</span>°<span> with the ground. Since the  force is not perpendicular or parallel to the sled then you will have two components. These components are in sine and cosine form.

for parallel component
x = rcos</span>β
<span>x = 110cos30</span>°
<span>x = 95.26

for the perpendicular component
y = rsin</span>β
<span>y = 110sin30</span>°
<span>y = 55</span>
3 0
2 years ago
Read 2 more answers
Other questions:
  • A 1 200-kg car traveling initially at vCi 5 25.0 m/s in an easterly direction crashes into the back of a 9 000-kg truck moving i
    14·1 answer
  • The automobile has a weight of 2700 lb and is traveling forward at 4 ft&gt;s when it crashes into the wall. If the impact occurs
    10·1 answer
  • A transverse wave is traveling on a string stretched along the horizontal x-axis. The equation for the
    15·1 answer
  • Harmonics problem. A square wave of frequency f contains harmonics (sine waves) at f, 3f, 5f, 7f, ... . Suppose a system respond
    6·1 answer
  • 500mL of He at 98 kPa expands to 750 mL. Find P2
    14·1 answer
  • An inverted image of an object is viewed on a screen from the side facing a converging lens. An opaque card is then introduced c
    6·1 answer
  • The period of an ocean wave is 5 seconds. What is the wave's frequency?
    15·1 answer
  • As light shines from air to another medium, i = 26.0 º. The light bends toward the normal and refracts at 32.0 º. What is the in
    9·1 answer
  • For a particular type of motion, the velocity is zero but the speed is a nonzero quantity. Which statement can you make about th
    5·1 answer
  • What is the work done by the 200.-N tension shown if it is used to drag the 150-N crate 25 m across the floor at a constant spee
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!