Torque is equal position vector times (r) times force vector
(F). Since F= 10 N and r = 0.1 m, so the
torque is equal to (10 N) x ( 0.1 m) = 1Nm. The direction of the torque would
be into the screen, clockwise rotation.
The answer is:
__________________________________________________
"sensors"
__________________________________________________
"<span>Monitoring systems may also use ___<u>sensors</u>___, which are devices that respond to a stimulus (such as heat, light, or pressure) and generate an electrical signal that can be measured or interpreted."
_________________________________________________</span>
When the surface of the comb rubs on your hair, the comb is electrically charged. When the comb comes close to the paper, the charge on the comb causes charge separation on the paper bits. Since paper is neutral, positive and negative charges are equivalent. The charge on the comb charges the area of the bit of paper nearest the comb to the opposite. Thus, the bits of paper become attracted to the comb.
Answer:
2805 °C
Explanation:
If the gas in the tank behaves as ideal gas at the start and end of the process. We can use the following equation:
The key issue is identify the quantities (P,T, V, n) in the initial and final state, particularly the quantities that change.
In the initial situation the gas have an initial volume
, temperature
, and pressure
,.
And in the final situation the gas have different volume
and temeperature
, the same pressure
,, and the same number of moles
,.
We can write the gas ideal equation for each state:
and
, as the pressure are equals in both states we can write
solving for
(*)
We know
= 935 °C, and that the
(the complete volume of the tank) is the initial volume
plus the part initially without gas which has a volume twice the size of the initial volume (read in the statement: the other side has a volume twice the size of the part containing the gas). So the final volume 
Replacing in (*)
Explanation:
It is known that relation between kinetic energy and temperature is as follows.

Hence, kinetic energy is directly proportional to temperature.
Thermal energy is defined as the energy present within the molecules of an object due to the motion of particles. Basically, thermal energy is internal energy of an object.
Thus, we can conclude that:
- Temperature and kinetic energy are directly proportional.
- Heat is a measure of thermal energy.
- Temperature is proportional to the total kinetic energy.