answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
2 years ago
10

In an attempt to impress its friends, an acrobatic beetle runs and jumps off the bottom step of a flight of stairs. The step is

20 cm tall, and the beetle jumps with an initial velocity of 1.5m/s at an angle of 20∘ above the horizontal. How far from the base of the step does the beetle land on the ground?
Physics
1 answer:
Aleks04 [339]2 years ago
6 0

Answer:

0.3677181864 m

Explanation:

u = Velocity = 1.5 m/s

\theta = Angle = 20°

y = -20 cm

Velocity components

u_x=ucos\theta\\\Rightarrow u_x=1.5cos20\\\Rightarrow u_x=1.40953\ m/s

u_y=usin\theta\\\Rightarrow u_y=1.5sin20\\\Rightarrow u_y=0.51303\ m/s

Acceleration components

a_x=0

a_y=-9.81\ m/s^2

y=u_yt+\dfrac{1}{2}a_yt^2\\\Rightarrow -0.2=0.51303\times t+\dfrac{1}{2}\times -9.81t^2\\\Rightarrow 4.905t^2-0.51303t-0.2=0

t=\frac{-\left(-0.51303\right)+\sqrt{\left(-0.51303\right)^2-4\cdot \:4.905\left(-0.2\right)}}{2\cdot \:4.905}, \frac{-\left(-0.51303\right)-\sqrt{\left(-0.51303\right)^2-4\cdot \:4.905\left(-0.2\right)}}{2\cdot \:4.905}\\\Rightarrow t=0.26088, -0.15629

Time taken is 0.26088 seconds

x=u_xt+\dfrac{1}{2}a_xt^2\\\Rightarrow x=1.40953\times 0.26088\\\Rightarrow x=0.3677181864\ m

The distance the beetle travels on the ground is 0.3677181864 m

You might be interested in
A metal, M, forms an oxide having the formula M2O3 containing 52.92% metal by mass. Determine the atomic weight in g/mole of the
irina [24]

Answer:

The atomic weight in g/mole of the metal (molar mass) is 8.87.

Explanation:

To begin, it is possible to assume that, as a sample, it has 100 g of the compound. This means that:

  • 52.92% metal: 52.92 g M
  • 47.80% oxygen: 47.80 g O

 Using the molar mass of oxygen, which is 16 g / mol, it is possible to calculate the amount of moles of oxygen present in the sample using the rule of three:

moles of oxygen=\frac{47.8g*1mol}{16g}

moles of oxygen=2.9875

The chemical formula of metal oxide tells you that:

2 M⁺³ + 3 O²⁻ ⇒ M₂O₃

In the previous equation you can see that you need 3  oxygen anions to react with two metal cations. Then:

2.9875 moles of oxygen*\frac{2 moles of metal M}{1 mol of oxygen} = 5.975 moles of metal M

You have  52.92 g  of metal in the sample, then the molar mass of the metal is:

molar mass=\frac{52.92 g}{5.975 mol}

molar mass≅ 8.87 g/mol

<u><em> The atomic weight in g/mole of the metal (molar mass) is 8.87.</em></u>

The closest match to this value is Beryllium (Be), which has an atomic mass of 9.0122 g / mol.

3 0
2 years ago
A stock person at the local grocery store has a job consisting of the following five segments:
vaieri [72.5K]

Answer:

B

Explanation:

Work done can be said to be positive if the applied force has a component to be in the direction of the displacement and when the angle between the applied force and displacement is positive.

In 1 and 2 work done is positive

6 0
2 years ago
A composite wall separates combustion gases at 2400°C from a liquid coolant at 100°C, with gas and liquid-side convection coeffi
evablogger [386]

Answer:

\text{heat loss} = 24864.05 \  W/m^2

Explanation:

If

  • T_1, T_2 are temperatures of gasses and liquid in Kelvins,
  • t_1 and t_2 are thicknesses of gas layer and steel slab in meters,
  • h_1, h_2 are convection coefficients gas and liquid in W/m^2 \cdot K,
  • R_c is the contact resistance in m^2 \cdot K/W,
  • and k_1, k_2 are thermal conductivities of gas and steel in W/m \cdot K,

then: part(a):

\text{heat loss } =  \frac{T_1 - T_2} { \frac{1}{h_1} + \frac{t_1}{t_2} + R_c + \frac{t_2}{k_2} + \frac{1}{h_2}}

using known values:

\text {heat loss} = 2486.05 W/m^2

part(b): Using the rate equation :

\text {heat loss} = h_1 (T_1 - T_{s1})

the surface temperature T_{s1} = 1678.438 \ K

and T_{c1} = T_{s1} - \frac {t_1 (\text{heat loss})}{k_1} = 1664.560 \ K

Similarly

T_{c2} = T_{c1} - R_c (\text{heat loss}) = 421.357 \ K

T_{s2} = T_{c2} - \frac {t_2 (\text{heat loss})}{ k_2} = 397.864 \ K

The temperature distribution is shown in the attached image

3 0
2 years ago
A 5.0-n projectile leaves the ground with a kinetic energy of 220 j. at the highest point in its trajectory, its kinetic energy
NikAS [45]
First, we get the difference between the kinetic energies such that,
             difference = (220J - 120J)
             difference = 100 J
The difference in kinetic energy is the equivalent of the potential energy which is calculated through the equation,
              PE = mgh
To calculate for the height, we derive the equation in a form,
           h = PE/mg
The product of the mass and acceleration due to gravity is the weight. 
                   h = (100 J) / (5 N)
                   h = 20 m

<em>Hence, the answer is 20 m. </em>
3 0
2 years ago
An electron is in motion at 4.0 × 106 m/s horizontally when it enters a region of space between two parallel plates, as shown, s
max2010maxim [7]

Answer:

xmax = 9.5cm

Explanation:

In this case, the trajectory described by the electron, when it enters in the region between the parallel plates, is a semi parabolic trajectory.

In order to find the horizontal distance traveled by the electron you first calculate the vertical acceleration of the electron.

You use the Newton second law and the electric force on the electron:

F_e=qE=ma             (1)

q: charge of the electron = 1.6*10^-19 C

m: mass of the electron = 9.1*10-31 kg

E: magnitude of the electric field = 4.0*10^2N/C

You solve the equation (1) for a:

a=\frac{qE}{m}=\frac{(1.6*10^{-19}C)(4.0*10^2N/C)}{9.1*10^{-31}kg}=7.03*10^{13}\frac{m}{s^2}

Next, you use the following formula for the maximum horizontal distance reached by an object, with semi parabolic motion at a height of d:

x_{max}=v_o\sqrt{\frac{2d}{a}}             (2)

Here, the height d is the distance between the plates d = 2.0cm = 0.02m

vo: initial velocity of the electron = 4.0*10^6m/s

You replace the values of the parameters in the equation (2):

x_{max}=(4.0*10^6m/s)\sqrt{\frac{2(0.02m)}{7.03*10^{13}m/s^2}}\\\\x_{max}=0.095m=9.5cm

The horizontal distance traveled by the electron is 9.5cm

4 0
2 years ago
Other questions:
  • Which of the following are linear defects?. . An edge dislocation. . A Frenkel defect. . A screw dislocation. . A Schottky defec
    6·1 answer
  • A sample of gas has a volume of 215 cm3 at 23.5 °c and 84.6 kpa. what volume (cm3 will the gas occupy at stp
    12·1 answer
  • Rachel has an unknown sample of a radioisotope listed in the table. Using a special technique, she is able to measure the mass o
    8·2 answers
  • Which best contrasts an electric generator and an electric motor? In a generator, slip rings function as a solenoid, and in a mo
    5·2 answers
  • A car is driving around a banked curve, with the road surface at an angle of 10.0º. If the radius of curvature of the road is 30
    14·1 answer
  • A uniform thin circular rubber band of mass M and spring constant k has an original radius R?
    11·1 answer
  • In the sum of 54.34 and 45.66, the number of significant figure for the<br>answer is​
    5·1 answer
  • At time t=0 a proton is a distance of 0.360 m from a very large insulating sheet of charge and is moving parallel to the sheet w
    7·1 answer
  • Calculate the time taken by the light to pass through a nucleus of diameter 1.56 10 -16 m. (speed of light is 3 10 8 m/s)
    10·1 answer
  • An electron with a charge value of 1.6 x 10-19 C is moving in the presence of an electric field of 400 N/C. What force does the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!