answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bess [88]
2 years ago
5

A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull

parallel to the ramp’s surface. If the carton travels 5.20 m along the surface of the ramp, calculate the work done on it by (a) the rope, (b) gravity, (c) the normal force of the ramp. (d) What is the net work done on the carton? (e) Suppose that the rope is angled at 50.0∘above the horizontal, instead of being parallel to the ramp’s surface. How much work does the rope do on the carton in this case?

Physics
1 answer:
Elden [556K]2 years ago
5 0

Answer:

(A) 374.4 J

(B) -332.8 J

(C) 0 J

(D) 41.6 J

(E)  351.8 J

Explanation:

weight of carton (w) = 128 N

angle of inclination (θ) = 30 degrees

force (f) = 72 N

distance (s) = 5.2 m

(A) calculate the work done by the rope

  • work done = force x distance x cos θ
  • since the rope is parallel to the ramp the angle between the rope and

        the ramp θ will be 0

       work done = 72 x 5.2 x cos 0

       work done by the rope = 374.4 J

(B) calculate the work done by gravity

  • the work done by gravity = weight of carton x distance x cos θ
  • The weight of the carton = force exerted by the mass of the carton = m x g
  • the angle between the force exerted by the weight of the carton and the ramp is 120 degrees.

      work done by gravity = 128 x 5.2  x cos 120

      work done by gravity = -332.8 J

(C) find the work done by the normal force acting on the ramp

  • work done by the normal force = force x distance x cos θ
  • the angle between the normal force and the ramp is 90 degrees

       

         work done by the normal force = Fn x distance x cos θ

         work done by the normal force = Fn x 5.2 x cos 90

         work done by the normal force = Fn x 5.2 x 0

         work done by the normal force = 0 J

(D)  what is the net work done ?

  • The net work done is the addition of the work done by the rope,       gravitational force and the normal force

     net work done = 374.4 - 332.8 + 0 =  41.6 J  

(E) what is the work done by the rope when it is inclined at 50 degrees to the horizontal

  • work done by the rope= force x distance x cos θ
  • the angle of inclination will be 50 - 30 = 20 degrees, this is because the ramp is inclined at 30 degrees to the horizontal and the rope is inclined at 50 degrees to the horizontal and it is the angle of inclination of the rope with respect to the ramp we require to get the work done by the rope in pulling the carton on the ramp

work done = 72 x 5.2 x cos 20

work done = 351.8 J

You might be interested in
The heat capacity of an object depends in part on its ____.
nikdorinn [45]
If I remember it correctly, heat capacity is inversely proportional to mass so the answer is:
The heat capacity of an object depends in part on its a. mass
7 0
2 years ago
An engineer wants to design an oval racetrack such that 3.20 × 10 3 lb racecars can round the exactly 1000 ft radius turns at 10
Reptile [31]

Answer:

The banking angle necessary for the race cars is 34.84°

Explanation:

For normal reaction the expression is:

\\Nsin\theta = \frac{mv^{2} }{R}  =Fc\\tan\theta =\frac{v^{2} }{Rg}  \\\theta =tan^{-1} (\frac{v^{2} }{Rg} )\\\theta =tan^{-1} (\frac{(102*0.447)^{2} }{1000*0.3048*9.8} )=34.84

4 0
1 year ago
The desperate contestants on a TV survival show are very hungry. The only food they can see is some fruit hanging on a branch hi
emmasim [6.3K]

Answer:

(a) v = 15m/a

(b) No they won't feast because the rock can only rise to a height of 11.5m which is less than 15m.

Explanation:

Please see the attachment below for film solution.

6 0
2 years ago
A professor's office door is 0.99 m wide, 2.2 m high, 4.2 cm thick; has a mass of 27 kg, and pivots on frictionless hinges. A "d
ANEK [815]

Answer:

I=8.8209\ kg.m^2

\alpha=0.6348\ rad.s^{-2}

Explanation:

Given:

  • width of door, w=0.99\ m
  • height of the door, h=2.2\ m
  • thickness of the door, t=4.2\ cm
  • mass of the door, m=27\ kg
  • torque on the door, \tau=5.6\ N.m

<em>∵Since the thickness of the door is very less as compared to its other dimensions, therefore we treat it as a rectangular sheet.</em>

  • For a rectangular sheet we have the mass moment of inertia inertia as:

I=\frac{1}{3} m.w^2

I=\frac{1}{3}\times 27\times 0.99^2

I=8.8209\ kg.m^2

We have a relation between mass moment of inertia, torque and angular acceleration as:

\alpha=\frac{\tau}{I}

\alpha=\frac{5.6}{8.8209}

\alpha=0.6348\ rad.s^{-2}

6 0
2 years ago
An object at rest is suddenly broken apart into two fragments by an explosion one fragment acquires twice the kinetic energy of
satela [25.4K]
<span>First, we use the kinetic energy equation to create a formula: Ka = 2Kb 1/2(ma*Va^2) = 2(1/2(mb*Vb^2)) The 1/2 of the right gets cancelled by the 2 left of the bracket so: 1/2(ma*Va^2) = mb*Vb^2 (1) By the definiton of momentum we can say: ma*Va = mb*Vb And with some algebra: Vb = (ma*Va)/mb (2) Substituting (2) into (1), we have: 1/2(ma*Va^2) = mb*((ma*Va)/mb)^2 Then: 1/2(ma*Va^2) = mb*(ma^2*Va^2)/mb^2 We cancel the Va^2 in both sides and cancel the mb at the numerator, leving the denominator of the right side with exponent 1: 1/2(ma) = (ma^2)/mb Cancel the ma of the left, leaving the right one with exponent 1: 1/2 = ma/mb And finally we have that: mb/2 = ma mb = 2ma</span>
8 0
2 years ago
Other questions:
  • According to the exercise principle of balance, a workout should __________.
    14·2 answers
  • The image shows an example of white light entering a prism and coming out as colors of the rainbow. How does a prism a produce t
    11·2 answers
  • An ideal gas is allowed to expand isothermally from 2.00 l at 5.00 atm in two steps:
    8·1 answer
  • Consider a person standing in an elevator that is moving at constant speed upward. The person, of mass m, has two forces acting
    5·2 answers
  • A brass lid screws tightly onto a glass jar at 20 degrees C. To help open the jar, it can be placed into a bath of hot water. Af
    9·1 answer
  • A tuning fork is sounded above a resonating tube (one end closed), which resonates at a length of 0.20 m and again at 0.60 m. If
    9·1 answer
  • A frictionless inclined plane is 8.0 m long and rests on a wall that is 2.0 m high. How much force is needed to push a block of
    5·1 answer
  • A(n) 71.1 kg astronaut becomes separated from the shuttle, while on a space walk. She finds herself 70.2 m away from the shuttle
    15·1 answer
  • Follow these steps to solve this problem: Two identical loudspeakers, speaker 1 and speaker 2, are 2.0 m apart and are emitting
    10·1 answer
  • An aircraft acceleration from 100m/s to 300m/s in 100 s what is acceleration​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!