Answer:
maximumforce is F = mg
Explanation:
For this case we must use Newton's second law,
Σ F = m a
bold indicate vectors, so we will write it in its components x and y
X axis
Fₓ = maₓ
Axis y
Fy - W = m a
Now let's examine our case, with indicate that the bird is level, the force of the wings can have a measured angle with respect to the x axis, where the vertical component is responsible for the lift, let's use trigonometry to find the components
Cos θ = Fₓ / F
Fₓ = F cos θ
sin θ = Fy / F
Fy = F sin θ
Let's replace and calculate
F sin θ -w = m a
As the bird indicates that leveling at the same height, so the vertical acceleration is zero (ay = 0)
F sin θ = w = mg
The maximum value of this equation occurs when the sin=1, in this case
F = mg
Answer:
Both of the stunt professionals will sustain injuries of the same seriousness
Explanation:
We are being told that both stunt professionals are standing from the same height, therefore they will attain the same equivalent speed at the bottom if we are to look at it from the principle of conservation of energy.
Now; According to principle of momentum; the momentum at which the first stunt professional A hits the ground be equal as the momentum with which stunt professional B will hit the wall.
Thus; both of the stunt professionals will sustain injuries of the same seriousness
Answer:

Explanation:
The acceleration of an object is given by:

where
v is the final velocity
u is the initial velocity
t is the time interval it takes for the velocity to change from u to v
For the rocket in this problem,
u = 20,000 m/s
v = 24,000 m/s
t = 55.0 - 5.0 = 50.0 s
Substituting,

-3 m/s
---------
per min
oh I think 8m/s to 3m/s to 0m/s
idk probably -0.08
Answer:
Earth's axis is tilted relative to its orbital plane.
Earth orbits around the Sun, completing one orbit each year
Explanation:
The earth tilt at an angle causes the sun rays to hit the earth surface around the globe differently. Due to the oblique angle that the rays hit the subtropics and poles, there is less heat intensity compared to the equator where the sun rays hit the earth's surface at a more or less right angle.
The earth rotation around the sun also causes seasons coupled with the earth’s tilts. As the earth rotates, in one point in the orbit, the northern or southern hemispheres will be tilted towards the sun. The phenomenon varies the local temperatures of particular regions of the earth hence driving seasonal climatic changes.