Answer:

Explanation:
<u>Friction Force</u>
When objects are in contact with other objects or rough surfaces, the friction forces appear when we try to move them with respect to each other. The friction forces always have a direction opposite to the intended motion, i.e. if the object is pushed to the right, the friction force is exerted to the left.
There are two blocks, one of 400 kg on a horizontal surface and other of 100 kg on top of it tied to a vertical wall by a string. If we try to push the first block, it will not move freely, because two friction forces appear: one exerted by the surface and the other exerted by the contact between both blocks. Let's call them Fr1 and Fr2 respectively. The block 2 is attached to the wall by a string, so it won't simply move with the block 1.
Please find the free body diagrams in the figure provided below.
The equilibrium condition for the mass 1 is

The mass m1 is being pushed by the force Fa so that slipping with the mass m2 barely occurs, thus the system is not moving, and a=0. Solving for Fa
![\displaystyle F_a=F_{r1}+F_{r2}.....[1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20F_a%3DF_%7Br1%7D%2BF_%7Br2%7D.....%5B1%5D)
The mass 2 is tried to be pushed to the right by the friction force Fr2 between them, but the string keeps it fixed in position with the tension T. The equation in the horizontal axis is

The friction forces are computed by


Recall N1 is the reaction of the surface on mass m1 which holds a total mass of m1+m2.
Replacing in [1]

Simplifying

Plugging in the values
![\displaystyle F_{a}=0.25(9.8)[400+2(100)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20F_%7Ba%7D%3D0.25%289.8%29%5B400%2B2%28100%29%5D)

Answer:
V=20cm/s
Explanation:
The average speed is the distance total divided the time total:

First stage:
T1=5s

But,
(decelerates to rest)
then: 
on the other hand:

X1=75cm
Second stage:
T2=5s

X2=125cm
Finally:
X=X1+X2=200cm
T=T1+T2=10s
V=X/T=20cm/s
The ball has an initial speed of 10m/s. This is because it is moving with the balloon. Now the balloonist throws the ball 4m/s with respect to himself, so it means that he gives the ball a extra push of 4m/s, so the total speed is 14m/s. Since it takes 30 seconds to reach the ground, the distance travelled is 14*30=420m.
Answer:

Explanation:
Torque is defined as the cross product between the position vector ( the lever arm vector connecting the origin to the point of force application) and the force vector.

Due to the definition of cross product, the magnitude of the torque is given by:

Where
is the angle between the force and lever arm vectors. So, the length of the lever arm (r) is minimun when
is equal to one, solving for r:

The question ask to find and calculate the induced current in the loop as a function time and the best answer would be that the induced current in the loop is 0.08 amperes. I hope you are satisfied with my answer and feel free to ask for more if you have clarifications and further questions