Answer:
T=C*P*V
Explanation:
It is said that a variable - let's call 'y' -, is proportional to another - let's call it 'x' - if x and y are multiplicatively connected to a constant 'C'. It means that their product (x*y) can be always equaled to the constant 'C' or their division (
) can be always equaled to 'C'. The first case is the case of the inverse proportionality: It is said that x and y are inversely proportional if

The second case is the case of the direct proportionality: It is said that x and y are directly proportional if
: x is directly proportional to y.
or
: y is directly proportional to x.
Always that any text does not specify about directly or inversely proportionality, it is assumed to mean directly automatically.
For our case, we are said that the temperature T is proportional to the pressure P and the volume V (we assume that it means directly); it is a double proportionality but follows the same rules:
If T were just proportional to P, we would have:

If T were just proportional to V, we would have:

As T is proportional to both P and V, the right equation is:

In order to isolate the temperature, let's multiply (P*V) at each side of the equation:

Answer:
Explained
Explanation:
a) No, the keys were initially moving upward in the elevator only effects the initial velocity of the key and not the rate of change of velocity that is acceleration. So, the keys accelerate with the same acceleration as before.
b)Yes, keys will accelerate towards the floor faster if it is a constant speed than it is moving downward because if the elevator is accelerating downward, the downward change in velocity of the keys is at least partially matched by a downward change in the velocity of the of the elevator.
Nope, I disagree with the former answer. The answer is definitely Z. <u>W area</u> (boxed with red outline) is represented as the hot reservoir while <u>Z area</u> is the cold reservoir (boxed with blue outline). X area is the heat engine itself and Y area is the work produced from thermal energy from hot reservoir. Typically, all heat engines lose some heat to the environment (based from the second law of thermodynamics) that is symbolically illustrated by the lost energy in the cold reservoir. This lost thermal energy is basically the unusable thermal energy. The higher thermal energy lost, the less efficient your heat engine is.
Answer:
Friction acts in the opposite direction to the motion of the truck and box.
Explanation:
Let's first review the problem.
A moving truck applies the brakes, and a box on it does not slip.
Now when the truck is applying brakes, only it itself is being slowed down. Since the box is slowing down with the truck, we can conclude that it is friction that slows it down.
The box in the question tries to maintains its velocity forward when the brakes are applied. We can think of this as the box exerting a positive force relative to the truck when the brakes are applied. When we imagine this, we can also figure out where the static friction will act to stop this positive force. Friction will act in the negative direction. Or in other words, friction will act in the opposite direction to the motion of the truck and box. This explains why the box slows down with the truck, as friction acts to stop its motion.
Answer:
y = 54.9 m
Explanation:
For this exercise we can use the relationship between the work of the friction force and mechanical energy.
Let's look for work
W = -fr d
The negative sign is because Lafourcade rubs always opposes the movement
On the inclined part, of Newton's second law
Y Axis
N - W cos θ = 0
The equation for the force of friction is
fr = μ N
fr = μ mg cos θ
We replace at work
W = - μ m g cos θ d
Mechanical energy in the lower part of the embankment
Em₀ = K = ½ m v²
The mechanical energy in the highest part, where it stopped
= U = m g y
W = ΔEm =
- Em₀
- μ m g d cos θ = m g y - ½ m v²
Distance d and height (y) are related by trigonometry
sin θ = y / d
y = d sin θ
- μ m g d cos θ = m g d sin θ - ½ m v²
We calculate the distance traveled
d (g syn θ + μ g cos θ) = ½ v²
d = v²/2 g (sintea + myy cos tee)
d = 9.8 12.6 2/2 9.8 (sin16 + 0.128 cos 16)
d = 1555.85 /7.8145
d = 199.1 m
Let's use trigonometry to find the height
sin 16 = y / d
y = d sin 16
y = 199.1 sin 16
y = 54.9 m