Answer:
r = 4.21 10⁷ m
Explanation:
Kepler's third law It is an application of Newton's second law where the forces of the gravitational force, obtaining
T² = (
) r³ (1)
in this case the period of the season is
T₁ = 93 min (60 s / 1 min) = 5580 s
r₁ = 410 + 6370 = 6780 km
r₁ = 6.780 10⁶ m
for the satellite
T₂ = 24 h (3600 s / 1h) = 86 400 s
if we substitute in equation 1
T² = K r³
K = T₁²/r₁³
K =
K = 9.99 10⁻¹⁴ s² / m³
we can replace the satellite values
r³ = T² / K
r³ = 86400² / 9.99 10⁻¹⁴
r = ∛(7.4724 10²²)
r = 4.21 10⁷ m
this distance is from the center of the earth
Complete Question
For each of the following scenarios, describe the force providing the centripetal force for the motion:
a. a car making a turn
b. a child swinging around a pole
c. a person sitting on a bench facing the center of a carousel
d. a rock swinging on a string
e. the Earth orbiting the Sun.
Answer:
Considering a
The force providing the centripetal force is the frictional force on the tires \
i.e 
where
is the coefficient of static friction
Considering b
The force providing the centripetal force is the force experienced by the boys hand on the pole
Considering c
The force providing the centripetal force is the normal from the bench due to the boys weight
Considering d
The force providing the centripetal force is the tension on the string
Considering e
The force providing the centripetal force is the force of gravity between the earth and the sun
Explanation:
Answer:

Explanation:
<u>Free Fall Motion</u>
A free-falling object refers to an object that is falling under the sole influence of gravity. If the object is dropped from a certain height h, it moves downwards until it reaches ground level.
The speed vf of the object when a time t has passed is given by:

Where 
Similarly, the distance y the object has traveled is calculated as follows:

If we know the height h from which the object was dropped, we can solve the above equation for t:

The stadium is h=32 m high. A pair of glasses is dropped from the top and reaches the ground at a time:

The pen is dropped 2 seconds after the glasses. When the glasses hit the ground, the pen has been falling for:

Therefore, it has traveled down a distance:

Thus, the height of the pen is:

Answer:
(a) Steel rod: 
Copper rod: 
(b) Steel rod: 
Copper rod: 
Explanation:
Length of each rod = 0.75 m
Diameter of each rod = 1.50 cm = 0.015 m
Tensile force exerted = 4000 N
(a) Strain is given as the ratio of change in length to the original length of a body. Mathematically, it is given as
Strain = 
where Y = Young modulus
F = Fore applied
A = Cross sectional area
For the steel rod:
Y = 200 000 000 000 
F = 4000N
A =
(r = d/2 = 0.015/2 = 0.0075 m)
=> A = 
=> A = 0.000177 
∴ 
For the copper rod:
Y = 120 000 000 000 N/m²
F = 4000N
A =
(r = d/2 = 0.015/2 = 0.0075 m)
=> A = 
=> A = 0.000177 

(b) We can find the elongation by multiplying the Strain by the original length of the rods:
Elongation = Strain * Length
For the steel rod:
Elongation = 
For the copper rod:
Elongation =
Complete Question:
Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bury itself just below the surface. What would have to be the mass of this asteroid, in terms of the earth’s mass M, for the day to become 25.0% longer than it presently is as a result of the collision? Assume that the asteroid is very small compared to the earth and that the earth is uniform throughout.
Answer:
m = 0.001 M
For the whole process check the following page: https://www.slader.com/discussion/question/suppose-that-an-asteroid-traveling-straight-toward-the-center-of-the-earth-were-to-collide-with-our/