answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PtichkaEL [24]
1 year ago
7

A girl pushes a 1.04 kg book across a table with a horizontal applied force 10 points

Physics
1 answer:
mr Goodwill [35]1 year ago
6 0

Answer:

Approximately 11.0\; \rm m \cdot s^{-1}. (Assuming that g = 9.81 \; \rm N \cdot kg^{-1}, and that the tabletop is level.)

Explanation:

Weight of the book:

W = m \cdot g = 1.04 \; \rm kg \times 9.81\; \rm N \cdot kg^{-1} \approx 10.202\; \rm N.

If the tabletop is level, the normal force on the book will be equal (in magnitude) to weight of the book. Hence, F(\text{normal force}) \approx 10.202\; \rm N.

As a side note, the F_N and W on this book are not equal- these two forces are equal in size but point in the opposite directions.

When the book is moving, the friction F(\text{kinetic friction}) on it will be equal to

  • \mu_{\rm k}, the coefficient of kinetic friction, times
  • F(\text{normal force}), the normal force that's acting on it.

That is:

\begin{aligned}& F(\text{kinetic friction}) \\ &= \mu_{\rm k}\cdot F(\text{normal force})\\ &\approx 0.35 \times 10.202\; \rm N \approx 3.5708\; \rm N\end{aligned}.

Friction acts in the opposite direction of the object's motion. The friction here should act in the opposite direction of that 15.0\; \rm N applied force. The net force on the book shall be:

\begin{aligned}& F(\text{net force})  \\ &= 15.0 \; \rm N - F(\text{kinetic friction}) \\& \approx 15.0 - 3.5708\; \rm N \approx 11.429\; \rm N\end{aligned}.

Apply Newton's Second Law to find the acceleration of this book:

\displaystyle a = \frac{F(\text{net force})}{m} \approx \frac{11.429\; \rm N}{1.04\; \rm kg} \approx 11.0\; \rm m \cdot s^{-2}.

You might be interested in
Lamar writes several equations trying to better understand potential energy. H = d with an arrow to the equation W = F d and P E
Debora [2.8K]

Answer:

The gravitational potential energy equals the work needed to lift the object.

Explanation:

here we know that

H = \vec d

work done is given as

W = \vec F . \vec d

Potential energy is given as

PE_g = mgh

force due to gravity is given as

\vec F_g = mg

now here if we plug in the value of distance and force in the formula of work done then we will have

W = (mg)(h)

so here we got

W = PE_g

so we can concluded that

The gravitational potential energy equals the work needed to lift the object.

3 0
2 years ago
Read 2 more answers
Which lanyard provides an impact force of less than 1,800 pounds, as recommended by good practices?
enyata [817]

Answer:

Energy absorbing lanyard as per OSHA

Explanation:

Energy absorbing lanyard if working over 6 feet in height so you don't break your back when you fall.

4 0
2 years ago
A ball having a mass of 0.20 kilograms is placed at a height of 3.25 meters. If it is dropped from this height, what will be the
asambeis [7]
EC_1 + EP_1 = EC2 + EP_2

EC_2 = 0

EC_2 = EP_1 - EP_2

EC_2 = mg(H_1 - H_2) = 0.20 kg * 9.8 m/s^2 * (3.25 m - 1.5m) = 3.43 J
7 0
1 year ago
Read 2 more answers
Pamela drove her car 999999 kilometers and used 999 liters of fuel. she wants to know how many kilometers (k)(k)left parenthesis
Vanyuwa [196]
When the relationship between two variables are said to be proportional, it means that one variable is a constant multiple of the other variable. They are related by a constant of proportionality, usually denoted as k. 

In this problem, the dependent variable is the distance in kilometers. Your mileage is limited with the amount of fuel you have. Thus, the independent variable is the liters of fuel. When these two are proportional, it could be expressed as

distance = k * liters of fuel, such that 
distance/liters of fuel = k

By variation,

distance,1/liters of fuel,1 = distance,2/liters of fuel,2, where 1 denotes situation 1 and 2 denotes situation 2. Therefore,

 999999 km /<span>999 liters =  x km /</span><span>121212 liters, where x is the unknown distance. We can now therefore find the value of x.

x = (999999*121212)/999
x = 121333212 kilometers</span>
3 0
2 years ago
A 0.300kg glider is moving to the right on a frictionless, ­horizontal air track with a speed of 0.800m/s when it makes a head-o
e-lub [12.9K]

Answer:

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

0.010935 J

0.0858675 J

Explanation:

m_1 = Mass of first glider = 0.3 kg

m_2 = Mass of second glider = 0.15 kg

u_1 = Initial Velocity of first glider = 0.8 m/s

u_2 = Initial Velocity of second glider = 0 m/s

v_1 = Final Velocity of first glider

v_2 = Final Velocity of second glider

As momentum and Energy is conserved

m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}

{\tfrac {1}{2}}m_{1}u_{1}^{2}+{\tfrac {1}{2}}m_{2}u_{2}^{2}={\tfrac {1}{2}}m_{1}v_{1}^{2}+{\tfrac {1}{2}}m_{2}v_{2}^{2}

From the two equations we get

v_{1}=\frac{m_1-m_2}{m_1+m_2}u_{1}+\frac{2m_2}{m_1+m_2}u_2\\\Rightarrow v_1=\frac{0.3-0.15}{0.3+0.15}\times 0.8+\frac{2\times 0.15}{0.3+0.15}\times 0\\\Rightarrow v_1=0.27\ m/s

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

v_{2}=\frac{2m_1}{m_1+m_2}u_{1}+\frac{m_2-m_1}{m_1+m_2}u_2\\\Rightarrow v_2=\frac{2\times 0.3}{0.3+0.15}\times 0.8+\frac{0.3-0.15}{0.3+0.15}\times 0\\\Rightarrow v_2=1.067\ m/s

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

Kinetic energy is given by

K=\frac{1}{2}m_1v_1^2\\\Rightarrow K=\frac{1}{2}0.3\times 0.27^2\\\Rightarrow K=0.010935\ J

Final kinetic energy of first glider is 0.010935 J

K=\frac{1}{2}m_2v_2^2\\\Rightarrow K=\frac{1}{2}0.15\times 1.07^2\\\Rightarrow K=0.0858675\ J

Final kinetic energy of second glider is 0.0858675 J

6 0
2 years ago
Other questions:
  • A 6.0-kg object moving 5.0 m/s collides with and sticks to a 2.0-kg object. after the collision the composite object is moving 2
    13·1 answer
  • A swimming pool contains x (less than 0.02) grams of chlorine per cubic meter. the pool measures 5 meters by 50 meters and is 2
    5·1 answer
  • An 80 kg skateboarder moving at 3 m/s pushes off with her back foot to move faster. If her velocity increases to 5 m/s, what is
    14·2 answers
  • Kate is working on a project in her tech education class. She plans to assemble a fan motor. Which form of energy does the motor
    11·1 answer
  • A beam of electrons moves at right angles to a magnetic field of 4.5 × 10-2 tesla. If the electrons have a velocity of 6.5 × 106
    14·1 answer
  • Two masses hang below a massless meter stick. Mass 1 is located at the 10cm mark with a weight of 15kg, while mass 2 is located
    13·1 answer
  • Which combination of units can be used to express the magnetic field?
    13·1 answer
  • Which is not a characteristic of an ideal fluid?
    9·1 answer
  • You are in a spacecraft moving at a constant velocity. The front thruster rocket fires incorrectly, causing the craft to slow do
    5·1 answer
  • A block is projected with speed v across a horizontal surface and slides to a stop due to friction. The same block is then proje
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!