Answer: -2.5
Explanation:
1/2(-5)= -2.5
-2.5(1)= -2.5
Got it right in Khan Academy. You’re welcome.
Answer:
v = 69.82 ms^-1
Explanation:
As we know,
R = vi2 sin2Ꝋ / g
vi2 =R g / sin2 Ꝋ where R is range R = 52m, Ꝋ = 3 Degrees
vi2 = 52 x 9.8 / sin 2(3) = 4875.227
v = 69.82 ms^-1
Answer:
155.38424 K
2.2721 kg/m³
Explanation:
= Pressure at reservoir = 10 atm
= Temperature at reservoir = 300 K
= Pressure at exit = 1 atm
= Temperature at exit
= Mass-specific gas constant = 287 J/kgK
= Specific heat ratio = 1.4 for air
For isentropic flow

The temperature of the flow at the exit is 155.38424 K
From the ideal equation density is given by

The density of the flow at the exit is 2.2721 kg/m³
Wow ! This will take more than one step, and we'll need to be careful
not to trip over our shoe laces while we're stepping through the problem.
The centripetal acceleration of any object moving in a circle is
(speed-squared) / (radius of the circle) .
Notice that we won't need to use the mass of the train.
We know the radius of the track. We don't know the trains speed yet,
but we do have enough information to figure it out. That's what we
need to do first.
Speed = (distance traveled) / (time to travel the distance).
Distance = 10 laps of the track. Well how far is that ? ? ?
1 lap = circumference of the track = (2π) x (radius) = 2.4π meters
10 laps = 24π meters.
Time = 1 minute 20 seconds = 80 seconds
The trains speed is (distance) / (time)
= (24π meters) / (80 seconds)
= 0.3 π meters/second .
NOW ... finally, we're ready to find the centripetal acceleration.
<span> (speed)² / (radius)
= (0.3π m/s)² / (1.2 meters)
= (0.09π m²/s²) / (1.2 meters)
= (0.09π / 1.2) m/s²
= 0.236 m/s² . (rounded)
If there's another part of the problem that wants you to find
the centripetal FORCE ...
Well, Force = (mass) · (acceleration) .
We know the mass, and we ( I ) just figured out the acceleration,
so you'll have no trouble calculating the centripetal force. </span>
Answer:
We know that the speed of sound is 343 m/s in air
we are also given the distance of the boat from the shore
From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion
s = ut + 1/2 at²
since the acceleration of sound is 0:
s = ut + 1/2 (0)t²
s = ut <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>
Replacing the variables in the equation with the values we know
1200 = 343 * t
t = 1200 / 343
t = 3.5 seconds (approx)
Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired