Answer:
diffracted into semicircular waves. constructive interference occurs where the waves are crest to crest or trough to trough, destructive interference occurs where they are crest to trough. The light that falls on the screen produces bands of light and dark fringes on the screen as a result of these constructive and destructive interferences. This is called the young's slit experiment.
U need to write better u egg head kid or tell your mom
Given Information:
Inclined plane length = 8 m
Inclined plane height = 2 m
Weight of ice block = 300 N
Required Information:
Force required to push ice block = F = ?
Answer:
Force required to push ice block = 75 N
Explanation:
The force required to push this block of ice on a inclined plane is given by
F = Wsinθ
Where W is the weight of the ice block and θ is the angle as shown in the attached image.
Recall from trigonometry ratios,
sinθ = opposite/hypotenuse
Where opposite is height of the inclined plane and hypotenuse in the length of the inclined plane.
sinθ = 2/8
θ = sin⁻¹(2/8)
θ = 14.48°
F = 300*sin(14.48)
F = 75 N
Therefore, a force of 75 N is required to push this ice block on the given inclined plane.
L = 1.00 m, the original length
A = 0.5 mm² = 0.5 x 10⁻⁶ m², the cross sectional area
E = 2.0 x 10¹¹ n/m², Young's modulus
P = 1500 N, the applied tension
Calculate the stress.
σ = P/A = (1500 N)/(0.5 x 10⁻⁶ m²) = 3 x 10⁹ N/m²
Let δ = the stretch of the string.
Then the strain is
ε = δ/L
By definition, the strain is
ε = σ/E = (3 x 10⁹ N/m²)/(2 x 10¹¹ N/m²) = 0.015
Therefore
δ/(1 m) = 0.015
δ = 0.015 m = 15 mm
Answer: 15 mm