Answer:
The decelerating force is 
Solution:
As per the question:
Frontal Area, A = 
Speed of the spaceship, v = 
Mass density of dust, 
Now, to calculate the average decelerating force exerted by the particle:
(1)
Volume, 
Thus substituting the value of volume, V in eqn (1):

where
A = Area
v = velocity
t = time
(2)

From Newton's second law of motion:

Thus differentiating w.r.t time 't':

where
= average decelerating force of the particle
Now, substituting suitable values in the above eqn:

Answer:
B
Explanation:
because, convection is the transfer of heat between fluid substances/materials
Given that,
Distance in south-west direction = 250 km
Projected angle to east = 60°
East component = ?
since,
cos ∅ = base/hypotenuse
base= hyp * cos ∅
East component = 250 * cos 60°
East component = 125 km
Answer:
Explanation:
a ) Earlier emf of cell applied on R₁ but now emf will be distributed among R₁ and R₂
Potential difference on R₁ will become less .
b ) Current is inversely proportional to resistance of the circuit. As resistance increases , current will be less . So current through R₁ will become less.
c )
When resistance is added in series , they are added up to obtain equivalent resistance . So equivalent resistance R₁₂ will be more than R₁ OR R₂.
Answer
given,


mass of book = 0.305 Kg
so, from the diagram attached below




computing horizontal component




θ = 62.35°