answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jlenok [28]
2 years ago
10

If the intensity level by 15 identical engines in a garage is 100 dB, what is the intensity level generated by each one of these

engines?
a) 44 dB
b) 67 dB
c) 13 dB
d) 88 dB
Physics
1 answer:
insens350 [35]2 years ago
5 0

To develop this problem it is necessary to apply the concepts related to Sound Intensity.

By definition the intensity is given by the equation

\beta = 10Log(\frac{I}{I_0})

Where,

I = Intensity of Sound

I_0= Intensity of Reference

At this case we have that 15 engines produces 15 times the reference intensity, that is

I= 15I_0

And the total mutual intensity is 100 dB, so we should

\beta = 100-10*log(\frac{15I_0}{I_0})

\beta = 100-10*log(15)

\beta = 100-11.76

\beta = 88.23dB

Therefore each one of these engines produce D. 88dB.

You might be interested in
A cylindrical bar of steel 10.1 mm (0.3976 in.) in diameter is to be deformed elastically by application of a force along the ba
amm1812

Answer:

14778.29 N

Explanation:

Diameter, d=10.1mm= 10.1*10^{-3}m

Since stress, \sigma= \frac {F}{A} where F is force, A is area and since specimen is cylindrical,  

A= \pi *(d/2)^{2}  Therefore, \sigma= \frac {F}{\pi*(0.5d)^{2}}

Also strain \epsilon= \frac { \triangle L}{L} where L is length

Poison’s ratio,v is the ratio of lateral strain to longitudinal strain hence

V= -\frac {\epsilon_{x}}{\epsilon_{z}}= \frac {\triangle dl_{o}}{d \triangle l}

From Hooke’s law, \sigma=E \epsilon_{z}

Conclusively, E* \epsilon_{z}=E* \frac {- \epsilon_{x}}{v}=\frac {F}{\pi*(0.5d)^{2}}

\frac {4F}{ \pi *d^{2}}=- \frac {E \triangle d}{vd}

F=- \frac {\pi *Ed \triangle d}{4v}

F= - \frac {\pi *207*10^{9} *10.1*10^{-3}* (-2.7*10^{-6})}{4*0.3}= 14778.29N

Therefore, required force F is 14778.29 N

3 0
2 years ago
The density of aluminum is 2.7 × 103 kg/m3 . the speed of longitudinal waves in an aluminum rod is measured to be 5.1 × 103 m/s.
andrey2020 [161]
<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2. So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density. So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave. Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>
5 0
2 years ago
A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wal
Studentka2010 [4]

(a) 18.9 m/s

The motion of the stone consists of two independent motions:

- A horizontal motion at constant speed

- A vertical motion with constant acceleration (g=9.8 m/s^2) downward

We can calculate the components of the initial velocity of the stone as it is launched from the ground:

u_x = v_0 cos \theta = (25.0)(cos 41.0^{\circ})=18.9 m/s\\u_y = v_0 sin \theta = (25.0)(sin 41.0^{\circ})=16.4 m/s

The horizontal velocity remains constant, while the vertical velocity changes due to the acceleration along the vertical direction.

When the stone reaches the top of its parabolic path, the vertical velocity has became zero (because it is changing direction): so the speed of the stone is simply equal to the horizontal velocity, therefore

v=18.9 m/s

(b) 22.2 m/s

We can solve this part by analyzing the vertical motion only first. In fact, the vertical velocity at any height h during the motion is given by

v_y^2 - u_y^2 = 2ah (1)

where

u_y = 16.4 m/s is the initial vertical velocity

v_y is the vertical velocity at height h

a=g=-9.8 m/s^2 is the acceleration due to gravity (negative because it is downward)

At the top of the parabolic path, v_y = 0, so we can use the equation to find the maximum height

h_{max} = \frac{-u_y^2}{2a}=\frac{-(16.4)^2}{2(-9.8)}=13.7 m

So, at half of the maximum height,

h = \frac{13.7}{2}=6.9 m

And so we can use again eq(1) to find the vertical velocity at h = 6.9 m:

v_y = \sqrt{u_y^2 + 2ah}=\sqrt{(16.4)^2+2(-9.8)(6.9)}=11.6 m/s

And so, the speed of the stone at half of the maximum height is

v=\sqrt{v_x^2+v_y^2}=\sqrt{18.9^2+11.6^2}=22.2 m/s

(c) 17.4% faster

We said that the speed at the top of the trajectory (part a) is

v_1 = 18.9 m/s

while the speed at half of the maximum height (part b) is

v_2 = 22.2 m/s

So the difference is

\Delta v = v_2 - v_2 = 22.2 - 18.9 = 3.3 m/s

And so, in percentage,

\frac{\Delta v}{v_1} \cdot 100 = \frac{3.3}{18.9}\cdot 100=17.4\%

So, the stone in part (b) is moving 17.4% faster than in part (a).

4 0
2 years ago
A hot–air balloon is moving at a speed of 10 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–dir
IrinaVladis [17]
The ball has an initial speed of 10m/s. This is because it is moving with the balloon. Now the balloonist throws the ball 4m/s with respect to himself, so it means that he gives the ball a extra push of 4m/s, so the total speed is 14m/s. Since it takes 30 seconds to reach the ground, the distance travelled is 14*30=420m.
7 0
2 years ago
While traveling from Boston to Hartford, Person A drives at a constant speed of 55 mph for the entire trip. Person B drives at 6
Ne4ueva [31]

Answer:

B will take 1.034 times the time of A from Boston to Hartford.

Explanation:

Let the distance from Boston to Hartford be S.

Person A drives at a constant speed of 55 mph for the entire trip,

Time taken by person A

             t_A=\frac{S}{55}

Person B drives at 65 mph for half the distance and then drives 45 mph for the second half of the distance.

Time taken by person B

            t_B=\frac{\frac{S}{2}}{65}+\frac{\frac{S}{2}}{45}=\frac{S}{130}+\frac{S}{90}=\frac{220S}{130\times 90}=\frac{11S}{585}

Ratio of time of arrival of B to A

                      \frac{t_B}{t_A}=\frac{\frac{11S}{585}}{\frac{S}{55}}=\frac{121}{117}=1.034

B will take 1.034 times the time of A from Boston to Hartford.

8 0
2 years ago
Other questions:
  • A race car exerts 19,454 n while the car travels at a constant speed of 201 mph, 91.36 m/s.what is the mass of the car?
    12·2 answers
  • Current X is 2.5 A and runs for 39 seconds. Current Y is 3.8 A and runs for 24 seconds. Which current delivered more charge, and
    15·1 answer
  • Consider a box sitting in the back of a pickup. The pickup accelerates to the right, and because the bed of the pickup is sticky
    8·2 answers
  • A policeman starts giving chase 60 seconds after a stolen car zooms by at 108 km/hr. At what minimum speed should he drive if he
    12·1 answer
  • What visible signs indicate a precipitation reaction when two solutions are mixed?
    6·1 answer
  • A 1000-kg car is driving toward the north along a straight horizontal road at a speed of 20.0 m/s. The driver applies the brakes
    5·1 answer
  • A child on a sled starts from rest at the top of a 15.0° slope. If the trip to the bottom takes 22.6 s how long is the slope? As
    11·1 answer
  • Suppose that the coefficient of kinetic friction between Zak's feet and the floor, while wearing socks, is 0.250. Knowing this,
    11·1 answer
  • While playing basketball in PE class, Logan lost his balance after making a lay-up and colliding with the padded wall behind the
    11·1 answer
  • Una furgoneta circula por una carretera a 55km/h. Diez km atrás , un coche circula en el mismo sentido a 85km/h ¿ En cuanto tiem
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!