Answer:
The mass of the cube is 420.8 kg.
Explanation:
Given that,
Length of edge = 38.9 cm
Density 
We need to calculate the volume of cube
Using formula of volume


We need to calculate the mass of the cube
Using formula of density




Hence, The mass of the cube is 420.8 kg.
Explanation:
Formula to calculate electric field because of the plate is as follows.
E =
=
=
Now, we will consider that equilibrium of forces are present there. So,
ma = qE
a =
=
According to the third equation of motion,
or, d = 
= 
= 0.254 m
Thus, we can conclude that
the proton will travel 0.254 m before reaching its turning point.
Ceres: Yes!
Namaka: No!
Eris: Yes!
Charon: No. (it's a satellite, and dwarf planet's can't be satellites!)
Haumea: Yes!
Makemake: Yes!
Pluto: Yes!
Glad To Help;)
Answer:
r = 4.44 m
Explanation:
For this exercise we use the Archimedes principle, which states that the buoyant force is equal to the weight of the dislodged fluid
B = ρ g V
Now let's use Newton's equilibrium relationship
B - W = 0
B = W
The weight of the system is the weight of the man and his accessories (W₁) plus the material weight of the ball (W)
σ = W / A
W = σ A
The area of a sphere is
A = 4π r²
W = W₁ + σ 4π r²
The volume of a sphere is
V = 4/3 π r³
Let's replace
ρ g 4/3 π r³ = W₁ + σ 4π r²
If we use the ideal gas equation
P V = n RT
P = ρ RT
ρ = P / RT
P / RT g 4/3 π r³ - σ 4 π r² = W₁
r² 4π (P/3RT r - σ) = W₁
Let's replace the values
r² 4π (1.01 10⁵ / (3 8.314 (70 + 273)) r - 0.060) = 13000
r² (11.81 r -0.060) = 13000 / 4pi
r² (11.81 r - 0.060) = 1034.51
As the independent term is very small we can despise it, to find the solution
r = 4.44 m
Answer:
density is
Mg/µL
Explanation:
given data
density of nuclear =
kg/m³
1 ml = 1 cm³
to find out
density of nuclear matter in Mg/µL
solution
we know here
1 Mg = 1000 kg
so
1 m³ is equal to
cm³
and here 1 cm³ is equal to 1 mL
so we can say 1 mL is equal to 10³ µL
so by these we can convert density
density =
kg/m³
density =
kg/m³ ×
Mg/µL
density =
Mg/µL