answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mars2501 [29]
2 years ago
8

An ideal spring is mounted horizontally, with its left end fixed. The force constant of the spring is 170 N/m. A glider of mass

1.2 kg is attached to the free end of the spring. The glider is pulled toward the right along a frictionless air track, and then released. Now the glider is moving in simple harmonic motion with amplitude 0.045 m. The motion is horizontal (one-dimensional).
Suddenly, Slimer holding an apple flies in and approaches the glider. Slimer drops the apple vertically onto the glider from a very small height. The apple sticks to the glider. The mass of the apple is 0.18 kg.
Recall that the total mechanical energy is E = 1/2 mv^2 + 1/2 kx^2 = 1/2 kA^2 = constant
(a) Calculate the new amplitude of the motion of the glider with apple if the apple is dropped at the moment when the glider passes through its equilibrium position, x = 0 m.
Hints: The total energy of the glider just before the collision is E = 1/2mglider v^2 = 1/2KA^2
The apple sticks to the glider in a completely inelastic collision. The glider is now moving with the apple but at a lower speed. The linear momentum is conserved. Write a corresponding equation.
Also, assume that the collision is very short, so just before the collision the glider is at x = 0 m, and just after the collision the glider and apple are still at x = 0 m. Therefore, the total energy of the glider just after the collision is Enew = 1/2mglider + applev^2new = 1/2kA^2new
(b) Calculate the period of the motion of the glider and the period of the motion of the glider with apple.
Hint: it's a very simple question.

Physics
1 answer:
solniwko [45]2 years ago
4 0

Answer:

A) The new amplitude = 0.048 m

B) Period T = 0.6 seconds

Explanation: Please find the attached files for the solution

You might be interested in
a plane travels 204 km, northeast in 15.0 minutes. It also increases elevation by 1.6 km, upward in the same amount of time. Wha
mina [271]

Answer:

230 m/s northeast, 1.8 m/s up

Explanation:

204 kilometres = 204000 metres

15.0 minutes = 900 seconds

Velocity = Distance / Time

= 204000 / 900

= 230 m/s northeast (to 2 sf.)

1.6km = 1600 metres

Velocity = 1600 / 900

= 1.8 m/s up (to 2 sf.)

7 0
1 year ago
How much gravitational potential energy does a 45.2 kg object have when it is 21.9m above the ground?
Blizzard [7]

Answer:

Explanation:

The formula for gravitational potential energy is

Ep = m · g · h   Assuming that the acceleration is g = 10m/s²

Ep = 45.4 · 10 · 21.9 = 9,942.6 J

God is with you!!!

6 0
2 years ago
A 500 kg motorcycle accelerates at a rate of 2 m/s .how much force was applied to the motorcycle?
Aleksandr [31]

Answer:

by using formula F=ma which is m stand for mass a stand for acceleration. so 500kg × 2 ms^-2

8 0
2 years ago
Read 2 more answers
If the top circuit has an oscillation frequency of 1000 Hz, the frequency of the bottom circuit is:_______.
kiruha [24]

Answer:

1410 Hz

Explanation:

Capacitance is reduced by 2, so the angular frequency will increase by a factor of \sqrt{2}.

5 0
2 years ago
A book is pushed with an initial horizontal velocity of 5.0 meters per second off the top of a 1.19 meter high desk. How far awa
kipiarov [429]

Answer:

2.45 m

Explanation:

First of all, we have to calculate the time of flight of the book, by using the equation for the vertical motion:

h=\frac{1}{2}gt^2

where

h = 1.19 m is the vertical distance covered by the book

g = 9.8 m/s^2 is the acceleration of gravity

t is the time of flight

Solving for t,

t=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2(1.19)}{9.8}}=0.49 s

Now we can find the horizontal distance covered by the book, which is given by

d=v_x t

where

v_x = 5.0 m/s is the horizontal velocity

t = 0.49 s is the time of flight

Substituting,

d=(5.0)(0.49)=2.45 m

So the book lands 2.45 m away.

8 0
2 years ago
Other questions:
  • Which is the least likely cause of an engine to hunt and surge at top no-load speeds? A lean air/fuel mixture An incorrect spark
    12·2 answers
  • Rachel has an unknown sample of a radioisotope listed in the table. Using a special technique, she is able to measure the mass o
    8·2 answers
  • The intensity at a distance of 6.0 m from a source that is radiating equally in all directions is 6.0 × 10-10 w/m2 . what is the
    5·1 answer
  • Which of the following statements characterizing types of waves are true?
    5·1 answer
  • A resultant vector is 8.00 units long and makes an angle of 43.0 degrees measured ������� – ��������� with respect to the positi
    15·1 answer
  • There are many well-documented cases of people surviving falls from heights greater than 20.0 m. In one such case, a 55.0 kg wom
    7·1 answer
  • A pitching machine is programmed to pitch baseballs horizontally at a speed of 87 mph . The machine is mounted on a truck and ai
    8·1 answer
  • A toroidal solenoid has an inner radius of 12.0 cm and an outer radius of 15.0 cm . It carries a current of 1.50 A . Part A How
    15·1 answer
  • Arrange an 8-, 12-, and 16-Ω resistor in a combination that has a total resistance of 8.89 Ω pls with de work
    8·1 answer
  • A 1,100 kg car comes uniformly to a stop. If the vehicle is accelerating at -1.2 m/s2 , which force is closest to the net force
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!