Answer:
any amount of force will do it as time is not mentioned here
Answer:
Explanation:
Using the efficiency formula;
Efficiency = Work done by the machine (output)/work done on the machine (input) ×100%
Efficiency =w/50 ×100
90 = 100w/50
Cross multiply
90×50 = 100W
4500 = 100W
W = 4500/100
W = 45Joules
Hence the lever does 45Joules of work on its load
2) Mechanical Advantage= Load/Effort
Given
MA = 4
Load = 500N
4 = 500/Effort
Effort = 500/4
Effort =125N
Hence the effort required to lift the load is 125N
Answer:
Connect C₁ to C₃ in parallel; then connect C₂ to C₁ and C₂ in series. The voltage drop across C₁ the 2.0-μF capacitor will be approximately 2.76 volts.
.
Explanation:
Consider four possible cases.
<h3>Case A: 12.0 V.</h3>

In case all three capacitors are connected in parallel, the
capacitor will be connected directed to the battery. The voltage drop will be at its maximum: 12 volts.
<h3>Case B: 5.54 V.</h3>
![-3.0\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-1.5\;\mu\text{F}-\end{array}]-](https://tex.z-dn.net/?f=-3.0%5C%3B%5Cmu%5Ctext%7BF%7D-%5B%5Cbegin%7Barray%7D%7Bc%7D-%7B%5Cbf%202.0%5C%3B%5Cmu%5Ctext%7BF%7D%7D-%5C%5C-1.5%5C%3B%5Cmu%5Ctext%7BF%7D-%5Cend%7Barray%7D%5D-)
In case the
capacitor is connected in parallel with the
capacitor, and the two capacitors in parallel is connected to the
capacitor in series.
The effective capacitance of two capacitors in parallel is the sum of their capacitance: 2.0 + 1.5 = 3.5 μF.
The reciprocal of the effective capacitance of two capacitors in series is the sum of the reciprocals of the capacitances. In other words, for the three capacitors combined,
.
What will be the voltage across the 2.0 μF capacitor?
The charge stored in two capacitors in series is the same as the charge in each capacitor.
.
Voltage is the same across two capacitors in parallel.As a result,
.
<h3>Case C: 2.76 V.</h3>
.
Similarly,
- the effective capacitance of the two capacitors in parallel is 5.0 μF;
- the effective capacitance of the three capacitors, combined:
.
Charge stored:
.
Voltage:
.
<h3 /><h3>Case D: 4.00 V</h3>
.
Connect all three capacitors in series.
.
For each of the three capacitors:
.
For the
capacitor:
.
Alkali metals : sodium , potassium
alkaline earth : magnesium , calcium
the rest are transition elements... i don't know about "inner transition"
Answer:

Explanation:
Given:
- frequency of the broadcast,

- we have the speed of the radiation equal to the speed of light,

The broadcast waves are the electromagnetic waves but it can travel only upto a hundred kilometers without any loss of information carried by it.
<u>The relation between the frequency and the wavelength:</u>


