Answer:

6000
1.2 J

Explanation:
I = Current = 1 A
t = Time = 2 ms
n = Number of electrocyte
V = Voltage = 100 mV
Charge is given by

The charge flowing through the electrocytes in that amount of time is 
The maximum potential is given by

The number of electrolytes is 6000
Energy is given by

The energy released when the electric eel delivers a shock is 1.2 J
Equivalent capacitance is given by

The equivalent capacitance of all the electrocyte cells in the electric eel is 
Magnetic flux can be calculated by the product of the magnetic field and the area that is perpendicular to the field that it penetrates. It has units of Weber or Tesla-m^2. For the first question, when there is no current in the coil, the flux would be:
ΦB = BA
A = πr^2
A = π(.1 m)^2
A = π/100 m^2
ΦB = 2.60x10^-3 T (π/100 m^2 ) ΦB = 8.17x10^-5 T-m^2 or Wb (This is only for one loop of the coil)
The inductance on the coil given the current flows in a certain direction can be calculated by the product of the total number of turns in the coil and the flux of one loop over the current passing through. We do as follows:
L = N (ΦB ) / I
L = 30 (8.17x10^-5 T-m^2) / 3.80 = 6.44x10^-4 mH
For the answer to the question above,
<span>To be 0.1 miles away from the check point ,
the car has to travel 1.4 miles OR 1.6 miles. </span>
53 miles = 60 minutes
1.4 miles = 1.4 / 53 X 60 = 1.5849056 minutes OR 95.1 seconds
<span>1.6 miles = 1.6 /53 X 60 = 1.8113207 minutes OR 108.7 seconds
</span>So the answer is <span>95.1s and 108.7s
I hope my answer helped you</span>
Answer:
If the mass of a star is greater than 3 solar masses, it will create a black hole. If its mass is less, it will create a neutron star.
Explanation:
If a star's gravity is high enough, when it condenses on itself, it will form a black hole. Otherwise, it will create a large amount of highly dense matter, such as a neutron star. It can be said that if the mass of a star is greater than 3 solar masses, it will create a black hole. If its mass is less, it will create a neutron star.