Answer:
U = 12,205.5 J
Explanation:
In order to calculate the internal energy of an ideal gas, you take into account the following formula:
(1)
U: internal energy
R: ideal gas constant = 8.135 J(mol.K)
n: number of moles = 10 mol
T: temperature of the gas = 100K
You replace the values of the parameters in the equation (1):

The total internal energy of 10 mol of Oxygen at 100K is 12,205.5 J
Answer:
Part a)

Part b)

Explanation:
Part a)
Electric field due to large sheet is given as







now the electric field is given as


Part b)
Now since the electric field is required at same distance on other side
so the field will remain same on other side of the plate

Answer:
a) 447.21m
b) -62.99 m/s
c)94.17 m/s
Explanation:
This situation we can divide in 2 parts:
⇒ Vertical : y =-200 m
y =1/2 at²
-200 = 1/2 *(-9.81)*t²
t= 6.388766 s
⇒Horizontal: Vx = Δx/Δt
Δx = 70 * 6.388766 = 447.21 m
b) ⇒ Horizontal
Vx = Δx/Δt ⇒ 70 = 400 /Δt
Δt= 5.7142857 s
⇒ Vertical:
y = v0t + 1/2 at²
-200 = v(5.7142857) + 1/2 *(-9.81) * 5.7142857²
v0= -7 m/s ⇒ it's negative because it goes down.
v= v0 +at
v= -7 + (-9.81) * 5.7142857
v= -62.99 m/s
c) √(70² + 62.99²) = 94.17 m/s
Answer:
THE FIRST ONE YOU SHOULD TELL HIM AND THE LAST ONE YOU SHOUDENT DO BECAUSE HE WILL DO IT AGAIN AND EXPECT OTHERS TO CLEAN UP AFTER HIM
Explanation:
Answer:
fcosθ + Fbcosθ =Wtanθ
Explanation:
Consider the diagram shown in attachment
fx= fcosθ (fx: component of friction force in x-direction ; f: frictional force)
Fbx= Fbcosθ ( Fbx: component of braking force in x-direction ; Fb: braking force)
Wx= Wtanθ (Wx: component of weight in x-direction ; W: Weight of semi)
sum of x-direction forces = 0
fx+ Fbx=Wx
fcosθ + Fbcosθ =Wtanθ