answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veronika [31]
2 years ago
5

A flat, wide cloud floats horizontally a few kilometers above the surface of Earth. Its lower surface carries a uniform surface

charge density of -2.6×10-4 C/m2 , while there is no excess charge elsewhere in the cloud. What is the magnitude of the electric field, in newtons per coulomb, a few meters below the cloud, under the cloud’s approximate center, due to the charge distribution?
Physics
1 answer:
valentinak56 [21]2 years ago
4 0

Answer:

\frac{kQ}{r^2} r^

Explanation:

Electric field strength= Force/unit charge

E= (kQq/r²)/q ₓ r

where r is the unit vector in the direction of unit charge

E= \frac{kQ}{r^2} r^

You might be interested in
Block A, mass 250 g , sits on top of block B, mass 2.0 kg . The coefficients of static and kinetic friction between blocks A and
masha68 [24]

Answer:

  F = 69.3 N

Explanation:

For this exercise we use Newton's second law, remembering that the static friction force increases up to a maximum value given by

               fr = μ N

We define a reference system parallel to the floor

block B  ( lower)

Y axis  

            N - W₁-W₂ = 0

            N = W₂ + W₂

            N = (M + m) g

X axis

              F -fr = M a

for block A (upper)

X axis

              fr = m a                 (2)

so that the blocks do not slide, the acceleration in both must be the same.

Let's solve the system by adding the two equations

             F = (M + m) a          (3)

             a =\frac{F}{ M+m}

the friction force has the formula

            fr = μ N

             fr = μ (M + m) g

let's calculate

            fr = 0.34 (2.0 + 0.250) 9.8

            fr = 7.7 N

we substitute in equation 2

             fr = m a

             a = fr / m

             a = 7.7 / 0.250

             a = 30.8 m / s²

we substitute in equation 3

             F = (2.0 + 0.250) 30.8

             F = 69.3 N

5 0
2 years ago
You are boiling pasta and absentmindedly grab a copper stirring spoon rather than your wooden spoon. The copper spoon has a 20 m
11111nata11111 [884]

The spoon to transfer 40 J of energy to your hand is descibed as follows

<u>Explanation:</u>

Given  area of cross section of copper spoon is A = 20mm into 1.5 mm

temperature difference is DT = (100 minus 35) = 65 0C

length of the spoon is l = 18 cm,

amount of heat should be transfer Q = 40 J

coefficient of thermal conductivity of copper k = 400 W by mk

we know that the thermal conductivity is Q by t = k into A into DT by l

t = Q into l by k into A into DT

t = (40 into 0.18) by  \left(400 \times 30 \times 10^{-6} \times 65\right)

t = 9.23 s

6 0
2 years ago
A 1.47-newton baseball is dropped from a height of 10.0 meters and falls through the air to the ground. The kinetic energy of th
vagabundo [1.1K]

Answer:

The maximum amount of mechanical energy converted to internal energy during the fall is 26.7 joules

Explanation:

Potential Energy (PE) = weight of baseball × height = 1.47N × 10m = 14.7Nm = 14.7 joules

Kinetic Energy (KE) = 12 joules

Maximum amount of mechanical energy converted to internal energy during the fall = PE + KE = 14.7 joules + 12 joules = 26.7 joules

8 0
2 years ago
Read 2 more answers
Two uniform, solid cylinders of radius R and total mass M are connected along their common axis by a short, light rod and rest o
sveta [45]

Explanation:

A) To prove the motion of the center of mass of the cylinders is simple harmonic:

System diagram for given situation is shown in attached Fig. 1

We can prove the motion of the center of mass of the cylinders is simple harmonic if

a_{x} = -\omega^{2}  x

where aₓ is acceleration when attached cylinders move in horizontal direction:

<h3>PROOF:</h3>

rotational inertia for cylinders  is given as:

                                  I=\frac{1}{2}MR^{2} -----(1)

Newton's second law for angular motion is:

                                             ∑τ = Iα ------(2)

For linear motion in horizontal direction it is:

                                             ∑Fₓ = Maₓ ------ (3)

By definition of torque:

                                               τ  = RF --------(4)        

Put (4) and (1) in (2)

                                       RF=\frac{1}{2}MR^{2}\alpha

                                       RF=\frac{1}{2}MR^{2}\alpha

from Fig 3 it can be seen that fs is force by which the cylinders roll without slipping as they oscillate

So above equation becomes

                                   f_{s}=\frac{1}{2}MR\alpha------ (5)

As angular acceleration is related to linear by:

                                          a= R\alpha

Eq (5) becomes

                                    f_{s}=\frac{1}{2}Ma_{x}---- (6)

aₓ shows displacement in horizontal direction

From (3)

                                              ∑Fₓ = Maₓ

Fₓ is sum of fs and restoring force that spring exerts:

                                  \sum F_{x} = f_{s} - kx ----(7)

Put (7) in (3)

                                  f_{s} - kx  = Ma_{x}[/tex] -----(8)

Using (6) in (8)

                               \frac{1}{2}Ma_{x} - kx =Ma_{x}

                                     a_{x} = \frac{2k}{3M} x --- (9)

For spring mass system

                                  a= -\omega^{2} x ----- (10)

Equating (9) and (10)

                                  \omega^{2} = \frac{2k}{3M}

\omega = \sqrt{ \frac{2k}{3M}}

then (9) becomes

                                a_{x} = - \omega^{2}x

(The minus sign says that x and  aₓ  have opposite directions as shown in fig 3)

This proves that the motion of the center of mass of the cylinders is simple harmonic.

<h3 /><h3>B) Time Period</h3>

Time period is related to angular frequency as:

                                   T=\frac{2\pi }{\omega}

                                  T = 2\pi \sqrt{\frac{3M}{2k}

                           

 

5 0
2 years ago
¿Alguien me puede ayudar? Problema: Un niño le pide gastada a su papá y éste le contesta que le dará los $120 que tiene en su bo
VLD [36.1K]

Answer: there are 15 coins of $2 and 18 coins of $5

Explanation:

I will answer in English.

X is the number of $5 coins.

Y is the number of $2 coins.

We have the system of equations:

Y + X = 33

Y*2 + X*5 = 120

first, we must isolate one of the variables in one of the equations and then replace it in the other equation, let's isolate Y in the first equation:

Y = 33 - X.

Then we can replace it in the other equation:

(33 - X)*2 + X*5 = 120

66 - X*2 + X*5 = 120

X*3 = 54

X = 54/3 = 18

and using the equation for Y.

Y = 33 - X = 33 - 18 = 15

So there are 15 coins of $2 and 18 coins of $5

3 0
2 years ago
Other questions:
  • A hopper jumps straight up to a height of 1.3 m. With what velocity did he leave the floor
    12·2 answers
  • If a spear is thrown at a fish swimming in a lake, it will often miss the fish completely. Why does this happen?
    13·2 answers
  • Two small balls, each of mass 5.0 g, are attached to silk threads 50 cm long, which are in turn tied to the same point on the ce
    12·1 answer
  • A fishing boat accidentally spills 3.0 barrels of diesel oil into the ocean. each barrel contains 42 gallons. if the oil film on
    12·1 answer
  • An electric field of 4.0 μV/m is induced at a point 2.0 cm from the axis of a long solenoid (radius = 3.0 cm, 800 turns/m). At w
    9·1 answer
  • A truck of mass 1800kg is moving with a speed 54km/h. When brakes are applied, it
    12·1 answer
  • An ice dancer with her arms stretched out starts into a spin with an angular velocity of 1.00 rad/s. Her moment of inertia with
    11·1 answer
  • A light bulb in a battery powered desk lamp has a current of 0.042 A and is connected to a 9.2 V battery. What is the resistance
    9·2 answers
  • A kinesin that is transporting a secretory vesicle uses approximately 80 ATP molecules/s. Each ATP provides a kinesin molecule w
    7·1 answer
  • HELP ME ASAP!!!!! A patient in the hospital is undergoing testing. The patient's brain is sending electrical signals to motor ne
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!