answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena-s [515]
2 years ago
13

It requires 0.30 kJ of work to fully drive a stake into the ground. If the average resistive force on the stake by the ground is

828 N, how long is the stake?
Physics
1 answer:
LenaWriter [7]2 years ago
6 0

Answer:

Length of the stake will be 0.3623 m

Explanation:

We have given energy required to fully drive a stake into ground = 0.30 KJ = 300 J

Average resistive force acting on the floor is equal to F = 828 N

We have to find the length of the stake

We know that work done is given by

W = Fd, here W is work done , F is average force and d is the length of the stake

So 300 = 828×d

d = 0.3623 m

So length of the stake will be 0.3623 m

You might be interested in
How does the sun transfer energy to Earth?
aleksley [76]

Answer:

By electromagnetic waves.

Explanation:

The sun transfers heat to earth via electromagnetic waves  in twomajor  ways:

Radiation- this is the transfer of energy by invisible electromagnetic ways.

Convection-The radiant sun energy warms the atmosphere and becomes heat energy. This transfer of heat through movement of fluids or usually air is called convection.

4 0
2 years ago
Read 2 more answers
An object moving at a velocity of 32m/s slows to a stop in 4 seconds. What was its acceleration?
Romashka [77]

Answer:

8m/s

Explanation:

a=d/t

a=32/4

a=8 m/s

6 0
2 years ago
Read 2 more answers
Compare and contrast the strength of the forces between two objects with a mass of 1 kg each, a charge of 10
DochEvi [55]

Answer:

Let's see the similarities between the two forces

* are proportional to the product of a magnitude, mass or charge

* They are inversely proportional to the square of the distance

* They are long-range forces since zero is not made up to an infinite distance. The gravitational force is always attractive, the electrical force can be attractive or repulsive.

The differences in them

* The electric force in much greater than the gravitational force

* The gravitational force is always attractive, the electrical force can be attractive or repulsive.

Explanation:

Let's start by calculating each force.

Gravitational force

             F =G \frac{m_1m_2}{r^2}  

let's calculate

             F = 6.67 10⁻¹¹  1  1 / 1²

             F = 6.67 10⁻¹¹ N

Electric force

             F = k \frac{q_1q_2}{r^2}  

indicates that the charge is q = 10 C

            F = 9 10⁹ 10 10 / 1²

            F = 9 10¹¹ N

Let's see the similarities between the two forces

* are proportional to the product of a magnitude, mass or charge

* They are inversely proportional to the square of the distance

* They are long-range forces since zero is not made up to an infinite distance. The gravitational force is always attractive, the electrical force can be attractive or repulsive.

The differences in them

* The electric force in much greater than the gravitational force

* The gravitational force is always attractive, the electrical force can be attractive or repulsive.

3 0
2 years ago
Frances drew a diagram to show electromagnetic induction.
kari74 [83]

Answer:

The answer is B) Magnetic field

Explanation:

I chose it and I got it right

8 0
2 years ago
Read 2 more answers
The current supplied by a battery slowly decreases as the battery runs down. Suppose that the current as a function of time is:
ludmilkaskok [199]

Answer: 8.1 x 10^24

Explanation:

I(t) = (0.6 A) e^(-t/6 hr)

I'll leave out units for neatness: I(t) = 0.6e^(-t/6)

If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).

For neatness let k = 1/(6x3600) = 4.63x10^-5, then:

I(t) = 0.6e^(-kt)

Providing t is in seconds, total charge Q in coulombs is

Q= ∫ I(t).dt evaluated from t=0 to t=∞.

Q = ∫(0.6e^(-kt)

= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.

= -(0.6/k)[e^-∞ - e^-0]

= -0.6/k[0 - 1]

= 0.6/k

= 0.6/(4.63x10^-5)

= 12958 C

Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.

5 0
2 years ago
Other questions:
  • What do wind turbines, hydroelectric dams, and ethanol plants have in common?
    7·2 answers
  • When you stand by the side of a pool someone swimming underwater appears to be in a different location than she really is the ef
    10·2 answers
  • Draw the vector C⃗ =1.5A⃗ −3B⃗ . The length and orientation of the vector will be graded. The location of the vector is not impo
    9·2 answers
  • When jumping, a flea reaches a takeoff speed of 1.0 m/s over a distance of 0.47 mm .What is the flea's acceleration during the j
    15·2 answers
  • A sinusoidal electromagnetic wave of frequency 6.10×1014hz travels in vacuum in the +x direction. the magnetic field is parallel
    7·1 answer
  • High‑speed ultracentrifuges are useful devices to sediment materials quickly or to separate materials. An ultracentrifuge spins
    7·1 answer
  • Susie walks 3 blocks north to the local CVS store, then 4 blocks east to her grandmother’s house. She then walks 2 blocks west a
    15·1 answer
  • Suppose the dim-looking headlight on the right is actually a small light on the front of a bicycle. What can you conclude about
    15·1 answer
  • Consider a steel tape measure with cross-sectional area, A = 0.0625 inches squared, and length L = 3, 600 inches at room tempera
    8·1 answer
  • A person with normal vision can focus on objects as close as a few centimeters from the eye up to objects infinitely far away. T
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!