answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena-s [515]
2 years ago
13

It requires 0.30 kJ of work to fully drive a stake into the ground. If the average resistive force on the stake by the ground is

828 N, how long is the stake?
Physics
1 answer:
LenaWriter [7]2 years ago
6 0

Answer:

Length of the stake will be 0.3623 m

Explanation:

We have given energy required to fully drive a stake into ground = 0.30 KJ = 300 J

Average resistive force acting on the floor is equal to F = 828 N

We have to find the length of the stake

We know that work done is given by

W = Fd, here W is work done , F is average force and d is the length of the stake

So 300 = 828×d

d = 0.3623 m

So length of the stake will be 0.3623 m

You might be interested in
A long, straight wire carrying a current of 3.45 A moves with a constant speed v to the right. A 5-turn circular coil of diamete
d1i1m1o1n [39]

Answer:

I = 69.3  μA

Explanation:

Current through the straight wire, I = 3.45 A

Number of turns, N = 5 turns

Diameter of the coil, D = 1.25 cm

Resistance of the coil, R = 3.25 \mu ohms

Distance of the wire from the center of the coil, d = 20 cm = 0.2 m

The magnetic field, B₁, when the wire is at a distance, d, from the center of the coil.

B_{1} = \frac{\mu_{0}I }{2\pi d}

B_{1} = \frac{4\pi* 10^{-7}  *3.45 }{2\pi *0.2}\\B_{1} =0.00000345 T

Magnetic field B₂ when the wire is at a distance, 2d from the center of the coil

B_{2} = \frac{\mu_{0}I }{2\pi(2d)) } \\B_{2} = \frac{\mu_{0}I }{4\pi d } \\

B_{2} = \frac{4\pi* 10^{-7}  *3.45 }{2\pi *2*0.2}\\B_{2} = 0.000001725 T

Change in the magnetic field, ΔB = B₂ - B₁ = 0.00001725 - 0.0000345

ΔB = -0.000001725

Induced current, I = \frac{E}{R}

E = -N (Δ∅)/Δt

Δ∅ = A ΔB

Area, A = πr²

diameter, d = 0.0125 m

Radius, r = 0.00625 m

A = π* 0.00625²

A = 0.0001227 m²

Δ∅ =  -0.000001725 * 0.0001227

Δ∅ = -211.6575 * 10⁻¹²

E = -N (Δ∅)/Δt

E = -5\frac{-211.6575 * 10^{-12} }{4.70} \\E = 225.17 * 10^{-12} V

Resistance, R = 3.25 μ ohms = 3.25 * 10⁻⁶ ohms

I = E/R

I = \frac{225.17 * 10^{-12} }{3.25 * 10^{-6} }

I = 0.0000693 A

I = 69 .3 * 10⁻⁶A

I = 69.3  μA

3 0
2 years ago
At a local swimming pool, the diving board is elevated h = 5.5 m above the pool's surface and overhangs the pool edge by L = 2 m
Margaret [11]

Answer:

Part a)

t = \sqrt{\frac{2h}{g}}

Part b)

t = 1.06 s

Part c)

L  = 4.86 m

Explanation:

Part a)

The height of the diving board is given as

h = 5.5 m

now the speed of the diver is given as

v_0 = 2.7 m/s

when the diver will jump into the water then his displacement in vertical direction is same as that of height of diving board

So we will have

y = v_y t + \frac{1}{2}at^2

h = 0 + \frac{1}{2}gt^2

t = \sqrt{\frac{2h}{g}}

Part b)

t = \sqrt{\frac{2h}{g}}

plug in the values in the above equation

t = \sqrt{\frac{2(5.5 m)}{9.81}

t = 1.06 s

Part c)

Horizontal distance moved by the diver is given as

d = v_0 t

d = 2.7 \times 1.06

d = 2.86 m

so the distance from the edge of the pool is given as

L = 2.86 + 2

L  = 4.86 m

4 0
1 year ago
When a test charge q0 = 2 nC is placed at the origin, it experiences a force of 8 times 10-4 N in the positive y direction. What
ser-zykov [4K]

Answer:

Electric field, E=4\times 10^5\ N/C

Explanation:

It is given that,

Magnitude of charge, q_o=2\ nC=2\times 10^{-9}\ C

Force experienced, F=8\times 10^{-4}\ N

We need to find the electric field at the origin. It is given by :

F=q_o\times E

E=\dfrac{F}{q_o}

E=\dfrac{8\times 10^{-4}}{2\times 10^{-9}}

E=4\times 10^5\ N/C

So, the electric field at the origin is 4\times 10^5\ N/C. Hence, this is the required solution.

3 0
1 year ago
As the external magnetic field decreases, an induced current flows in the coil. what is the direction of the induced magnetic fi
GrogVix [38]
As the external magnetic field decreases, an induced current flows in the coil. The direction of the induced magnetic field would be pointing to the screen. The flux through the coil is said to decrease. In order to counter this change, the coil would generate or produce a magnetic field that is induced that would be pointing to the same direction as the external field that is flowing which is into the the screen. This is according to Lenz's law or the right hand rule. It states that an induced current in a circuit that is due to the change or motion in   magnetic field should be directed opposing to the change in the flux.
4 0
1 year ago
A helicopter travels west at 80 mph. It is moving above a car traveling on a highway at 80 mph. Given this information, you can
gavmur [86]

Answer:

d. at the same velocity

Explanation:

I will assume the car is also travelling westward because it was stated that the helicopter was moving above the car. In that case, it depends where the observer is. If the observer is in the car, the helicopter would look like it is standing still ( because both objects have the same velocity). If the observer is on the side of the road, both objects would be travelling at the same velocity. Also recall that, velocity is a vector quantity; it is direction-aware. Velocity is the rate at which the position changes but speed is the rate at which object covers distance and it is not direction wise. Hence velocity is the best option.

5 0
1 year ago
Other questions:
  • jack wants to find out which laundry detergent cleans the best ( Gain, Tide, or Purex). So, he takes a cotton sheet and cuts it
    11·2 answers
  • A 7-n vector at an angle of 45° to the horizontal has a vertical component that is about _______.
    6·1 answer
  • Ari, a young patient who is regularly treated by a psychiatrist, feels compelled to carry out repetitive tasks the same way very
    14·2 answers
  • Brad is working on a speed problem in physics class. The problem tells him that a girl runs from her house to the park 0.05 km a
    10·2 answers
  • You are asked to design a spring that will give a 1160-kg satellite a speed of 2.50 m>s relative to an orbiting space shuttle
    10·1 answer
  • An electron is located in an electric field of magnitude 600. newtons per coulomb. what is the magnitude of the electrostatic fo
    14·1 answer
  • At a given instant of time, a car and a truck are traveling side by side in adjacent lanes of a highway. The car has a greater v
    8·1 answer
  • A projectile of mass M, initially at rest, is acted upon by a net force [including gravity] that increases quadratically with ti
    8·1 answer
  • You are in a spacecraft moving at a constant velocity. The front thruster rocket fires incorrectly, causing the craft to slow do
    5·1 answer
  • A 1.00 kg ball traveling towards a soccer player at a velocity of 5.00 m/s rebounds off the soccer
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!