Answer:
I = 69.3 μA
Explanation:
Current through the straight wire, I = 3.45 A
Number of turns, N = 5 turns
Diameter of the coil, D = 1.25 cm
Resistance of the coil, 
Distance of the wire from the center of the coil, d = 20 cm = 0.2 m
The magnetic field, B₁, when the wire is at a distance, d, from the center of the coil.

Magnetic field B₂ when the wire is at a distance, 2d from the center of the coil


Change in the magnetic field, ΔB = B₂ - B₁ = 0.00001725 - 0.0000345
ΔB = -0.000001725
Induced current, 
E = -N (Δ∅)/Δt
Δ∅ = A ΔB
Area, A = πr²
diameter, d = 0.0125 m
Radius, r = 0.00625 m
A = π* 0.00625²
A = 0.0001227 m²
Δ∅ = -0.000001725 * 0.0001227
Δ∅ = -211.6575 * 10⁻¹²
E = -N (Δ∅)/Δt

Resistance, R = 3.25 μ ohms = 3.25 * 10⁻⁶ ohms
I = E/R

I = 0.0000693 A
I = 69 .3 * 10⁻⁶A
I = 69.3 μA
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
The height of the diving board is given as

now the speed of the diver is given as

when the diver will jump into the water then his displacement in vertical direction is same as that of height of diving board
So we will have



Part b)

plug in the values in the above equation


Part c)
Horizontal distance moved by the diver is given as



so the distance from the edge of the pool is given as


Answer:
Electric field, 
Explanation:
It is given that,
Magnitude of charge, 
Force experienced, 
We need to find the electric field at the origin. It is given by :




So, the electric field at the origin is
. Hence, this is the required solution.
As the external magnetic field decreases, an induced current flows in the coil. The direction of the induced magnetic field would be pointing to the screen. The flux through the coil is said to decrease. In order to counter this change, the coil would generate or produce a magnetic field that is induced that would be pointing to the same direction as the external field that is flowing which is into the the screen. This is according to Lenz's law or the right hand rule. It states that an induced current in a circuit that is due to the change or motion in magnetic field should be directed opposing to the change in the flux.
Answer:
d. at the same velocity
Explanation:
I will assume the car is also travelling westward because it was stated that the helicopter was moving above the car. In that case, it depends where the observer is. If the observer is in the car, the helicopter would look like it is standing still ( because both objects have the same velocity). If the observer is on the side of the road, both objects would be travelling at the same velocity. Also recall that, velocity is a vector quantity; it is direction-aware. Velocity is the rate at which the position changes but speed is the rate at which object covers distance and it is not direction wise. Hence velocity is the best option.