answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ganezh [65]
1 year ago
14

A 1.00 kg ball traveling towards a soccer player at a velocity of 5.00 m/s rebounds off the soccer

Physics
1 answer:
matrenka [14]1 year ago
4 0

Answer:

A)   F = - 8.5 10² N,  B)   I = 21 N s

Explanation:

A) We can solve this problem using the relationship of momentum and momentum

          I = Δp

in this case they indicate that the body rebounds, therefore the exit speed is the same in modulus, but with the opposite direction

         v₀ = 8.50 m / s

         v_f = -8.50 m / s

         F t = m v_f -m v₀

         F = m \frac{(v_f - v_o)}{t}

let's calculate

         F = 1.00 \ \frac{(-8.5-8.5)}{2 \ 10^{-2}}

         F = - 8.5 10² N

B) let's start by calculating the speed with which the ball reaches the ground, let's use the kinematic relations

         v² = v₀² - 2g (y- y₀)

as the ball falls its initial velocity is zero (vo = 0) and the height upon reaching the ground is y = 0

         v = \sqrt{2g y_o}

calculate  

         v = \sqrt{2 \ 9.8 \ 10}

         v = 14 m / s

to calculate the momentum we use

         I = Δp

         I = m v_f - mv₀

when it hits the ground its speed drops to zero

we substitute

         I = 1.50 (0-14)

         I = -21 N s

the negative sign is for the momentum that the ground on the ball, the momentum of the ball on the ground is

        I = 21 N s

You might be interested in
Charge q1 is distance s from the negative plate of a parallel-plate capacitor. Charge q2=q1/3 is distance 2s from the negative p
Svetlanka [38]

Answer:

The ratio (U₁/U₂) = 6

Explanation:

U, the potential energy is given as

U = kqQ/r

k = Coulomb's constant

q = charge we're concerned about

Q = charge of the negative plate of the capacitor

r = distance of q from the negative plate of the capacitor.

For charge q₁

U₁ = kq₁Q/s

U₂ = kq₂Q/2s

But q₂ = q₁/3

U₂ becomes U₂ = kq₁Q/6s

U₁ = kq₁Q/s

U₂ = kq₁Q/6s

(U₁/U₂) = 6

5 0
2 years ago
Using your own worlds, write a brief paragraph about: (1) why substitutional vacancies exist in metals and (2) why the equilibri
Talja [164]
Ummmmmmmmmm is this what subject??????? Because I hv no idea unless u tell me a subject
6 0
2 years ago
A(n) 71.1 kg astronaut becomes separated from the shuttle, while on a space walk. She finds herself 70.2 m away from the shuttle
denpristay [2]

Answer:

10.347 minutes.

Explanation:

According to F = ma, she exerts force on camera of the magnitude

F = 0.67Kg*12m/s^{2} = 8.04N, assuming it took her one second to accelerate camera to 12m/s, then by newtons third law, which says every action has equal and opposite reaction , the camera exerts the same amount of force on the astronaut which gives her acceleration of a = \frac{8.04N}{70.2Kg} = 0.1130801680m/s^2.

and velocity of V = 0.1130801680m/s.

at this velocity , the astronaut has to cover the distance of 70.2 meters, it will take her 620.7985075s = 10.347 min to get to the shuttle (using S = vt).

4 0
2 years ago
A baseball player exerts a force of 100 N on a ball for a distance of 0.5 mas he throws it. If the ball has a mass of 0.15 kg, w
Aloiza [94]

Answer:

25.82 m/s

Explanation:

We are given;

Force exerted by baseball player; F = 100 N

Distance covered by ball; d = 0.5 m

Mass of ball; m = 0.15 kg

Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.

We should note that work done is a measure of the energy exerted by the baseball player.

Thus;

F × d = ½mv²

100 × 0.5 = ½ × 0.15 × v²

v² = (2 × 100 × 0.5)/0.15

v² = 666.67

v = √666.67

v = 25.82 m/s

4 0
1 year ago
What is the mass of an object that creates 33,750 joules of energy by traveling at 30 m/sec?
nikklg [1K]
The Energy is Kinetic Energy.

Kinetic Energy = 1/2*mv²,  Where m is mass in kg, v is velocity in m/s

Energy is 33750 Juoles,  v = 30m/s

1/2*mv² = E

1/2*m*30² = 33750

m = (2*33750) / (30²)     Using a calculator

m = 75 kg

Mass of object is 75 kg.
5 0
2 years ago
Read 2 more answers
Other questions:
  • a driver shifts into neutral when her 1200 kg is moving at 80 km/h and finds the speed has dropped to 65 km/h 10 s later . what
    9·1 answer
  • A spherical shell of radius 9.0 cm carries a uniform surface charge density σ= 9.0 nC/m2. The electric field at r= 9.1 cm is app
    5·1 answer
  • The temperature, T, of a gas is jointly proportional to the pressure P of the gas and the volume V occupied by the gas. Use C as
    12·1 answer
  • As a youngster, you drive a nail in the trunk of a young tree that is 3 meters tall. The nail is about 1.5 meters from the groun
    9·1 answer
  • Mantles for gas lanterns contain thorium, because it forms an oxide that can survive being heated to incandescence for long peri
    8·1 answer
  • Astronauts in the International Space Station must work out every day to counteract the effects of weightlessness. Researchers h
    15·1 answer
  • The downsprue leading into the runner of a certain mold has a length of 175 mm. The cross-sectional area at the base of the spru
    14·1 answer
  • An insurance company hired your group to help investigate an insurance claim following a car accident. In the accident, two cars
    5·2 answers
  • Four kilograms of carbon monoxide (CO) is contained in a rigid tank with a volume of 1 m^3. The tank is fitted with a paddle whe
    11·1 answer
  • Determine a formula for the maximum height h that a rocket will reach if launched vertically from the Earth's surface with speed
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!