The info given in the question:
Voltage= 120V
Current=18A
Now we have to find the resistance. To find it use the following formula:
V=IR
Now making R to be the subject of the formula
R=V/I
R=120/18
The answer is 6.67 ohms
As dishwasher is the only resistor in the line the voltage drop is going to be 120V. The resistance values determines the hindrance that is present in the circuit that opposes the free flowing electrons
Answer:
r = 4.21 10⁷ m
Explanation:
Kepler's third law It is an application of Newton's second law where the forces of the gravitational force, obtaining
T² = (
) r³ (1)
in this case the period of the season is
T₁ = 93 min (60 s / 1 min) = 5580 s
r₁ = 410 + 6370 = 6780 km
r₁ = 6.780 10⁶ m
for the satellite
T₂ = 24 h (3600 s / 1h) = 86 400 s
if we substitute in equation 1
T² = K r³
K = T₁²/r₁³
K =
K = 9.99 10⁻¹⁴ s² / m³
we can replace the satellite values
r³ = T² / K
r³ = 86400² / 9.99 10⁻¹⁴
r = ∛(7.4724 10²²)
r = 4.21 10⁷ m
this distance is from the center of the earth
Given : Initial velocity = -1.3 m/s
Final Velocity = -6.5 m/s.
Time = 25 minutes.
To find : Average acceleration.
Solution: We are given units in meter/second (m/s).
So, we need to convert time 25 minutes in seconds.
1 minute = 60 seconds.
25 minutes = 60*25 = 1500 seconds.
Formula for average acceleration is given by,

We are not given intial time, so we can take initial time =0.
Plugging values in the above formula.

= 
= -0.003467
or
.
<span>At time t1 = 0 since the body is at rest, the body has an angular velocity, v1, of 0. At time t = X, the body has an angular velocity of 1.43rad/s2. Since Angular acceleration is just the difference in angular speed by time. We have 4.44 = v2 -v1/t2 -t1 where V and t are angular velocity and time. So we have 4.44 = 1.43 -0/X - 0. Hence X = 1.43/4.44 = 0.33s.</span>
Answer:
No, the resulting wave in the diagram does not demonstrate destructive interference. The resulting wave in the diagram shows a bigger wave than Wave 1 or Wave 2. If it demonstrated destructive interference, it would be a smaller wave or a horizontal line. With destructive interference, waves break down to form a smaller wave, or cancel each other out, resulting in no wave formation.