Answer:
Explanation:
Given
Force P is acting upward
C is vertical contact Force
W is the weight of the crate
As P is unable to move the Block therefore Normal reaction keeps on acting on block
thus we can say that
P-W+C=0
P=W-C

Actually Welcome to the concept of Efficiency.
Here we can see that, the Input work is given as 2.2 x 10^7 J and the efficiency is given as 22%
The efficiency is => 22% => 22/100.
so we get as,
E = W(output) /W(input)
hence, W(output) = E x W(input)
so we get as,
W(output) = (22/100) x 2.2 x 10^7
=> W(output) = 0.22 x 2.2 x 10^7 => 0.484 x 10^7
hence, W(output) = 4.84 x 10^6 J
The useful work done on the mass is 4.84 x 10^6 J
The density of the substance is the ratio of its mass over the space it occupies. In mathematical equation, this can be expressed as,
ρ = m / v
where ρ is density, m is mass, and v is volume.
Substituting the known values from the given,
ρ = (45 g) / (8 cm³)
ρ = 5.625 g/cm³
<em>ANSWER: 5.625 g/cm³</em>
Answer:
solved
Explanation:
a) F_net = (F2 - F3)i - F1 j
b) |Fnet| = sqrt( (F2 - F3)^2 + F1^2)
= sqrt( (9- 5)^2 + 1^2)
= 4.123 N
c) θ = tan^-1( (Fnet_y/Fnet_x)
= tan^-1( -1/(9-5) )
= -14.036°
Answer:
60.8 cm²
Explanation:
The charge density, σ on the surface is σ = Q/A where q = charge = 87.6 pC = 87.6 × 10⁻¹² C and A = area = 65.2 cm² = 65.2 × 10⁻⁴ m².
σ = Q/A = 87.6 × 10⁻¹² C/65.2 × 10⁻⁴ m² = 1.34 × 10⁻⁸ C/m²
Now, the charge through the Gaussian surface is q = σA' where A' is the charge in the Gaussian surface.
Since the flux, Ф = 9.20 Nm²/C and Ф = q/ε₀ for a closed Gaussian surface
So, q = ε₀Ф = σA'
ε₀Ф = σA'
making A' the area of the Gaussian surface the subject of the formula, we have
A' = ε₀Ф/σ
A' = 8.854 × 10⁻¹² F/m × 9.20 Nm²/C ÷ 1.34 × 10⁻⁸ C/m²
A' = 81.4568/1.34 × 10⁻⁴ m²
A' = 60.79 × 10⁻⁴ m²
A' ≅ 60.8 cm²