answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gelneren [198K]
2 years ago
5

A basketball player makes a jump shot. The 0.600-kg ball is released at a height of 2.01 m above the floor with a speed of 7.26

m/s. The ball goes through the net 3.10 m above the floor at a speed of 3.81 m/s. What is the work done on the ball by air resistance, a nonconservative force
Physics
1 answer:
matrenka [14]2 years ago
7 0

Answer: Work done on the ball by air resistance = -5.049J

Explanation:

From law of conservation of energy

Potential energy + kinetic energy + Work of air resistance  = Potential energy + kinetic energy +

mgh + 1/2 mv^2  + W= mgh¹ + 1/2 mv¹^2

=0.6 Kg x 9.8m/s x 2.01  +1/2 x0.60 x (7.26)^2+ W= 0.6 x 9.8 x 3.10 + 1/2 x 0.6 x 3.81

=11.8188 + 15.81288 +W = 18.228 + 4.3548

=27.63168 +W =22.58283

W = 22.578-27.63168

W=-5.049 J

Work done on the ball by air resistance = -5.049J ( N egative sign indicates that  Work was in opposite direction of motion

You might be interested in
Dane is standing on the moon holding an 8 kilogram brick 2 metres above the ground. How much energy is in the brick's gravitatio
Nadya [2.5K]

The gravitational potential energy of the brick is 25.6 J

Explanation:

The gravitational potential energy of an object is the energy possessed by the object due to its position in a gravitational field.

Near the surface of a planet, the gravitational potential energy is given by

PE=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the height of the object relative to the ground

For the brick in this problem, we have:

m = 8 kg is its mass

g = 1.6 N/kg is the strenght of the gravitational field on the moon

h = 2 m is the height above the ground

Substituting, we find:

PE=(8)(1.6)(2)=25.6 J

Learn more about potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

3 0
1 year ago
Read 2 more answers
A careful photographic survey of Jupiter’s moon Io by the spacecraft Voyager 1 showed active volcanoes spewing liquid sulfur to
Y_Kistochka [10]

Answer:

529.15 m/s

Explanation:

h = Maximum height = 70000 m

g = Acceleration due to gravity = 2 m/s²

m = Mass of sulfur

As the potential and kinetic energies are conserved

mgh=\dfrac{1}{2}mv^2\\\Rightarrow h=\dfrac{v^2}{2g}\\\Rightarrow v=\sqrt{2gh}\\\Rightarrow v=\sqrt{2\times 2\times 70000}\\\Rightarrow v=529.15\ m/s

The speed with which the liquid sulfur left the volcano is 529.15 m/s

7 0
2 years ago
1. A liquid of mass 250g is heated with an electric heater. Its temperature rises from 30°C to 80°C, the specific heat capacity
statuscvo [17]

Answer:

1) 50 seconds 2) 100°C

Explanation:

(Follows formula of Power=Energy/Time)

1) 500W x X = 2000J/kg°C x .25kg x 50°C

X = 50 seconds.

2) 2000W x 300s = 1000J/kg°C x 2kg x X

X = 300

Initial temperature => 400°C-300°C = 100°C

8 0
2 years ago
Suppose Earth's mass increased but Earth's diame-
navik [9.2K]

Answer: It would increase.

Explanation:

The equation for determining the force of the gravitational pull between any two objects is:

F = G \frac{m1m2}{r^2}

Where G is the universal gravitational constant, m1 is the mass of one body, m2 is the mass of the other body, and r^2 is the distance between the two objects' centers squared.

Assuming the Earth's mass but not its diameter increased, in the equation above m1 (the term usually indicative of the object of larger mass) would increase, while the r^2 would not.

Thus, it goes without saying that, with some simple reasoning about fractions, an increasing numerator over a constant denominator would result in a larger number to multiply by G, thus also meaning a larger gravitational strength between Earth and whatever other object is of interest.

7 0
2 years ago
Calculate the amount of work done to draw a current of 8A from a point at 100V to a point at 120V in 2 seconds?
Morgarella [4.7K]
Given:
I=8A
t=2second
Potential difference,V=120-100=20volt
Workdone=V×i×t
=20×8×2
=320 joule.
3 0
2 years ago
Other questions:
  • A leaky faucet drips 40 times in 30.0 s. what is the frequency of the dripping?
    13·1 answer
  • Block b rests upon a smooth surface. if the coefficients of static and kinetic friction between a and b are μs = 0.4 and μk = 0.
    5·1 answer
  • Suppose astronomers discover a new planet farther away from the Sun than Earth. How would the day and year of this planet compar
    9·2 answers
  • A 250-kg crate is on a rough ramp, inclined at 30° above the horizontal. The coefficient of kinetic friction between the crate a
    15·2 answers
  • Which of the following expressions will have units of kg⋅m/s2? Select all that apply, where x is position, v is velocity, m is m
    10·1 answer
  • A car drives at a constant speed around a banked circular track with a diameter of 136 m . The motion of the car can be describe
    12·2 answers
  • Water exits a garden hose at a speed of 1.2 m/s. If the end of the garden hose is 1.5 cm in diameter and you want to make the wa
    9·1 answer
  • A 817 kg car has four 8.91 kg wheels. When the car is moving, what fraction of the total kinetic energy of the car is due to rot
    12·1 answer
  • A hot–air balloon is moving at a speed of 10.0 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–d
    8·1 answer
  • Henrietta is going off to her physics class, jogging down the sidewalk at a speed of 4.15 m/s . Her husband Bruce suddenly reali
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!