Answer:
If there is any sheets or padded material in this room you can cover the window, you could turn off all the lights if there is a light switch in the room, you could try to bring a bright flashlight in and shine it into the other room(try to annoy the person watching you so they leave), act really boring and hopefully make the other person lose interest.
Explanation:
(hint) If you actually get in a situation like this place your fingernail against the mirror or glass you think could possibly be a one-way mirror. If there's a gap between your nail and the mirror, it's most likely a genuine mirror :)
The most probable reason why the magnets won't stick on the refrigerator is that the body of the refrigerator and the magnets have like poles. If both have negative or both have positive poles facing each other, they will repel. In principle, magnets are attracted to opposite poles and like poles repel.
Answer:
v_f = 17.4 m / s
Explanation:
For this exercise we can use conservation of energy
starting point. On the hill when running out of gas
Em₀ = K + U = ½ m v₀² + m g y₁
final point. Arriving at the gas station
Em_f = K + U = ½ m v_f ² + m g y₂
energy is conserved
Em₀ = Em_f
½ m v₀ ² + m g y₁ = ½ m v_f ² + m g y₂
v_f ² = v₀² + 2g (y₁ -y₂)
we calculate
v_f ² = 20² + 2 9.8 (10 -15)
v_f = √302
v_f = 17.4 m / s
Answer:
The airliner travels 1.65 km along the runway before coming to a halt.
Explanation:
Given
Resistive forces = (2.90 × 10⁵) N = 290000 N
Mass of the airliner = (1.70 × 10⁵) kg = 170000 kg
Velocity of airliner = 75 m/s
Let the distance over moved by the airliner be equal to d
According to the work-energy theorem, the work done by the resistive forces in stopping the airliner is equal to the travelling kinetic energy of the airliner.
Work done by the resistive forces = (290000) × d = (290,000d) J
Kinetic energy of the airliner = (1/2)(170000)(75²) = 478,125,000 J
290000d = 478,125,000
d = (478,125,000/290,000)
d = 1648.7 m = 1.65 km
Hope this helps!!!