answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marysya [2.9K]
1 year ago
5

Consider a long, closely wound solenoid with 10,000 turns per meter. What current, in amperes, is needed in the solenoid to prod

uce a magnetic field inside the solenoid, near its center, that is 104 times the Earth’s magnetic field of 4.95 × 10-5 T?
Physics
1 answer:
Makovka662 [10]1 year ago
4 0

Answer:

0.4344A

Explanation:

From Ampere's law, it can be shown that the magnetic field B inside a long solenoid is

B= \mu_0NI

Where

B= Magnetic field strenght at distance d

I= current

\mu_0 =Permeability of free space (4\pi*10^{-7} Tm/A)

N= Number of loops

Our values are defined as follow,

N=10000

B=5.25*10^{-5}T

B'=5.25*10^{-5} * 104 = 5.46*10^{-3}T

As a current required to become 104 times the Earth's magnetic field is required, we use B '

B'= \mu_0NI

5.46*10^{-3}=4\pi*10^{-7}*10000*I

I=\frac{5.46*10^{-3}}{4\pi*10^{-7}*10000}

I=0.4344A

<em>Therefore is needed 0.4344A in the solenoid to produce a magnetic field inside the solenoid, near its center, that is 104 times the Earth's magnetic field.</em>

You might be interested in
A child of mass m is at the edge of a merry-go-round of diameter d. When the merry-go-round is rotating with angular acceleratio
dem82 [27]

Answer:

The torque on the child is now the same, τ.

Explanation:

  • It can be showed that the external torque applied by a net force on a rigid body, is equal to the product of the moment of inertia of the body with respect to the axis of rotation, times the angular acceleration.
  • In this case, as the movement of the child doesn't create an external torque, the torque must remain the same.
  • The moment of inertia is the sum of the moment of inertia of the merry-go-round (the same that for a solid disk) plus the product of  the mass of the child times the square of the distance to the center.
  • When the child is standing at the edge of the merry-go-round, the moment of inertia is as follows:

       I_{to} = I_{d} + m*r^{2}  = m*\frac{r^{2}}{2} +  m*r^{2} = \frac{3}{2}*  m*r^{2} (1)

  • So, τ = 3/2*m*r²*α (2)
  • When the child moves to a position half way between the center and the edge of the merry-go-round, the moment of inertia of the child decreases, as the distance to the center is less than before, as follows:

       I_{t} = I_{d} + m*\frac{r^{2}}{4}   = m*\frac{r^{2}}{2} + m*\frac{r^{2}}{4}  = \frac{3}{4}*  m*r^{2} (3)

  • Since the angular acceleration increases from α to 2*α, we can write the torque expression as follows:

       τ = 3/4*m*r² * (2α) = 3/2*m*r²

        same result than in (2), so the torque remains the same.

7 0
2 years ago
Submarine a travels horizontally at 11.0 m/s through ocean water. it emits a sonar signal of frequency f 5 5.27 3 103 hz in the
xeze [42]
Velocity of submarine A is vs = 11.0m/s
frequency emitted by submarine A. F = 55.273 × 10∧3HZ
Velocity of submarine B = vO = 3.00m/s
The given equation is
f' = ((V + vO) ((v - vS)) × f
The observer on submarine detects the frequency f'.
The sign of vO should be positive as the observer of submarine B is moving away from the source of submarine A.
The speed of the sound used in seawater is 1533m/s
The frequency which is detected by submarine B is 
fo = fs (V -vO/ v +vs)
= 53.273 × 10∧3hz) ((1533 m/s - 4.5 m/s)/ (1533 m/s +11 m/s)
fo = 5408 HZ
6 0
2 years ago
Cathode ray tubes in old television sets worked by accelerating electrons and then deflecting them with magnetic fields onto a p
Roman55 [17]

Answer:

B = 0.046T

Explanation:

given

size of the screen = 51.2cm

distance from center = 11.1cm

region of magnetic field = 1.00cm

V= 22000V= 22kV

 

3 0
2 years ago
A biker travels at an average speed of 18 km/hr along a 0.30 km straight segment of a bike path. How much time (in hours) does t
lawyer [7]

Answer: 0.016 h

Explanation:

\text{Average speed} = \frac{\text {Total Distance}}{\text {total time taken}}

It is given that, biker has an average speed = 18 km/h

Total distance traveled = 0.30 km

Therefore, time taken by biker to travel this distance:

\Rightarrow \text{total time taken} = \frac{0.30 km}{18 km/h}=0.016 h

Thus, the biker takes 0.016 hours to travel the segment of 0.30 km at an average speed of 18 km/h.

7 0
2 years ago
WallyGPX accelerates from 0 m/s to 8 m/s in 3 seconds. What is his acceleration? Is this acceleration higher than that of a car
olga nikolaevna [1]

My Phone is +2348181686682

4 0
2 years ago
Other questions:
  • Rachel has an unknown sample of a radioisotope listed in the table. Using a special technique, she is able to measure the mass o
    8·2 answers
  • The strength of the electric field at a certain distance from a point charge is represented by E. What is the strength of the el
    14·1 answer
  • One electron collides elastically with a second electron initially at rest. After the collision, the radii of their trajectories
    14·1 answer
  • Two billiard balls, assumed to have identical mass, collide in a perfectly elastic collision. Ball A is heading East at 12 m/s.
    15·1 answer
  • Two loudspeakers emit sound waves along the x-axis. A listener in front of both speakers hears a maximum sound intensity when sp
    7·1 answer
  • the minute hand on a clock is 9 cm long and travels through an arc of 252 degrees every 42 minutes. To the nearest tenth of a ce
    15·1 answer
  • A small metallic bob is suspended from the ceiling by a thread of negligible mass. The ball is then set in motion in a horizonta
    6·1 answer
  • Integrated Concepts A basketball player jumps straight up for a ball. To do this, he lowers his body 0.300 m and then accelerate
    9·1 answer
  • Suppose that we are designing a cardiac pacemaker circuit. The circuit is required to deliver pulses of 1ms duration to the hear
    13·1 answer
  • In a novel from 1866 the author describes a spaceship that is blasted out of a cannon with a speed of about 11.000 m/s. The spac
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!