To solve this problem, we will start by defining each of the variables given and proceed to find the modulus of elasticity of the object. We will calculate the deformation per unit of elastic volume and finally we will calculate the net energy of the system. Let's start defining the variables
Yield Strength of the metal specimen

Yield Strain of the Specimen

Diameter of the test-specimen

Gage length of the Specimen

Modulus of elasticity



Strain energy per unit volume at the elastic limit is



Considering that the net strain energy of the sample is




Therefore the net strain energy of the sample is 
Answer:
Two possible points
<em>x= 0.67 cm to the right of q1</em>
<em>x= 2 cm to the left of q1</em>
Explanation:
<u>Electrostatic Forces</u>
If two point charges q1 and q2 are at a distance d, there is an electrostatic force between them with magnitude

We need to place a charge q3 someplace between q1 and q2 so the net force on it is zero, thus the force from 1 to 3 (F13) equals to the force from 2 to 3 (F23). The charge q3 is assumed to be placed at a distance x to the right of q1, and (2 cm - x) to the left of q2. Let's compute both forces recalling that q1=1, q2=4q and q3=q.





Equating


Operating and simplifying

To solve for x, we must take square roots in boths sides of the equation. It's very important to recall the square root has two possible signs, because it will lead us to 2 possible answer to the problem.

Assuming the positive sign
:




Since x is positive, the charge q3 has zero net force between charges q1 and q2. Now, we set the square root as negative



The negative sign of x means q3 is located to the left of q1 (assumed in the origin).
Sample Response: The technology being described is fiber optics. Since they are small and flexible, they enable doctors to see areas that they might otherwise be unable to see without surgery.
The volume of the room is the product of its dimensions:

Now, from the equation

where d is the density, m is the mass and V is the volume, we deduce

So, multiply the density and the volume to get the mass of air in the room.
Answer:
F = 2.01*10^-16N -^k
Explanation:
In order to calculate the magnetic force perceived by the bee, you use the following formula:
(1)
q: charge of the bee = 1pC = 1*10^-12 C
The average speed of a bee and the magnetic field of the earth are:
v = 6.70m/s
B = 30*10^-6 T
The bee is flying to the west (-^i). You consider that the magnetic field direction is to the north (^j). Then, the direction of the magnetic force is:
-^i X ^j = -^k
You replace the values of the parameters in the equation (1), in order to calculate the magnitude of the force:

The magnetic force perceived by the bee is 2.01*10^-16N in the -^k direction, that is, toward the ground