Answer:
The amount of heat required is 
Explanation:
From the question we are told that
The mass of water is 
The temperature of the water before drinking is 
The temperature of the body is 
Generally the amount of heat required to move the water from its former temperature to the body temperature is

Here
is the specific heat of water with value
So

=>
Generally the no of mole of sweat present mass of water is

Here
is the molar mass of sweat with value
=> 
=> 
Generally the heat required to vaporize the number of moles of the sweat is mathematically represented as

Here
is the latent heat of vaporization with value 
=> 
=> 
Generally the overall amount of heat energy required is

=> 
=> 
Answer:
Explanation:
Electric field due to charge at origin
= k Q / r²
k is a constant , Q is charge and r is distance
= 9 x 10⁹ x 5 x 10⁻⁶ / .5²
= 180 x 10³ N /C
In vector form
E₁ = 180 x 10³ j
Electric field due to q₂ charge
= 9 x 10⁹ x 3 x 10⁻⁶ /.5² + .8²
= 30.33 x 10³ N / C
It will have negative slope θ with x axis
Tan θ = .5 / √.5² + .8²
= .5 / .94
θ = 28°
E₂ = 30.33 x 10³ cos 28 i - 30.33 x 10³ sin28j
= 26.78 x 10³ i - 14.24 x 10³ j
Total electric field
E = E₁ + E₂
= 180 x 10³ j +26.78 x 10³ i - 14.24 x 10³ j
= 26.78 x 10³ i + 165.76 X 10³ j
magnitude
= √(26.78² + 165.76² ) x 10³ N /C
= 167.8 x 10³ N / C .
Answer:
The fraction of mass that was thrown out is calculated by the following Formula:
M - m = (3a/2)/(g²- (a²/2) - (ag/2))
Explanation:
We know that Force on a moving object is equal to the product of its mass and acceleration given as:
F = ma
And there is gravitational force always acting on an object in the downward direction which is equal to g = 9.8 ms⁻²
Here as a convention we will use positive sign with acceleration to represent downward acceleration and negative sign with acceleration represent upward acceleration.
Case 1:
Hot balloon of mass = M
acceleration = a
Upward force due to hot air = F = constant
Gravitational force downwards = Mg
Net force on balloon is given as:
Ma = Gravitational force - Upward Force
Ma = Mg - F (balloon is moving downwards so Mg > F)
F = Mg - Ma
F = M (g-a)
M = F/(g-a)
Case 2:
After the ballast has thrown out,the new mass is m. The new acceleration is -a/2 in the upward direction:
Net Force is given as:
-m(a/2) = mg - F (Balloon is moving upwards so F > mg)
F = mg + m(a/2)
F = m(g + (a/2))
m = F/(g + (a/2))
Calculating the fraction of the initial mass dropped:
![M-m = \frac{F}{g-a} - \frac{F}{g+\frac{a}{2} }\\M-m = F*[\frac{1}{g-a} - \frac{1}{g+\frac{a}{2} }]\\M-m = F*[\frac{(g+(a/2)) - (g-a)}{(g-a)(g+(a/2))} ]\\M-m = F*[\frac{g+(a/2) - g + a)}{(g-a)(g+(a/2))} ]\\M-m = F*[\frac{(3a/2)}{g^{2}-\frac{a^{2}}{2}-\frac{ag}{2}} ]](https://tex.z-dn.net/?f=M-m%20%3D%20%5Cfrac%7BF%7D%7Bg-a%7D%20-%20%5Cfrac%7BF%7D%7Bg%2B%5Cfrac%7Ba%7D%7B2%7D%20%7D%5C%5CM-m%20%3D%20F%2A%5B%5Cfrac%7B1%7D%7Bg-a%7D%20-%20%5Cfrac%7B1%7D%7Bg%2B%5Cfrac%7Ba%7D%7B2%7D%20%7D%5D%5C%5CM-m%20%3D%20F%2A%5B%5Cfrac%7B%28g%2B%28a%2F2%29%29%20-%20%28g-a%29%7D%7B%28g-a%29%28g%2B%28a%2F2%29%29%7D%20%5D%5C%5CM-m%20%3D%20F%2A%5B%5Cfrac%7Bg%2B%28a%2F2%29%20-%20g%20%2B%20a%29%7D%7B%28g-a%29%28g%2B%28a%2F2%29%29%7D%20%5D%5C%5CM-m%20%3D%20F%2A%5B%5Cfrac%7B%283a%2F2%29%7D%7Bg%5E%7B2%7D-%5Cfrac%7Ba%5E%7B2%7D%7D%7B2%7D-%5Cfrac%7Bag%7D%7B2%7D%7D%20%5D)
the sentence with leeward side and the sentence that has windward side both have errors.