answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uysha [10]
1 year ago
6

You need to design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a

500 pF capacitor. What values do you need to specify for R1 and R2

Physics
1 answer:
Svetllana [295]1 year ago
8 0

Answer:

Hello your question has some missing parts and the required diagram attached below is the missing part and the diagram

Digital circuits require actions to take place at precise times, so they are controlled by a clock that generates a steady sequence of rectangular voltage pulses. One of the most widely

used integrated circuits for creating clock pulses is called a 555 timer.  shows how the timer’s output pulses, oscillating between 0 V and 5 V, are controlled with two resistors and a capacitor. The circuit manufacturer tells users that TH, the time the clock output spends in the high (5V) state, is TH =(R1 + R2)*C*ln(2). Similarly, the time spent in the low (0 V) state is TL = R2*C*ln(2). Design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a 500 pF capacitor. What values do you need to specify for R1 and R2?

ANSWER : R1 = 144.3Ω,   R2 =  72.2 Ω

Explanation:

Frequency = 10 MHz

Time period = 1 / F =  0.1 <em>u </em>s

Duty cycle = 75% = 0.75

Duty cycle can be represented as :   Ton / T

Also: Ton = Th = 0.75 * 0.1 <em>u </em>s  = 75 <em>n</em> s

TL = T - Th = 100 <em>n</em>s - 75 <em>n</em> s = 25 <em>n</em> s

To find the value of R2 we use the equation for  time spent in the low (0 V) state

TL = R2*C*ln(2)

hence R2 = TL / ( C * In 2 )

c = 500 pF

Hence R2 = 25 / ( 500 pF * 0.693 )  = 72.2 Ω

To find the value of R1 we use the equation for the time the clock output spends in the high (5V) state,

Th = (R1 + R2)*C*ln(2)

  from the equation make R1 the subject of the formula

R1 =  (Th - ( R2 * C * In2 )) / (C * In 2)

R1 = ( 75 ns - ( 72.2 * 500 pF * 0.693)) / ( 500 pF * 0.693 )

R1 = ( 75 ns  - ( 25 ns ) / 500 pf * 0.693

     = 144.3Ω

You might be interested in
Biologists think that some spiders "tune" strands of their web to give enhanced response at frequencies corresponding to those a
garik1379 [7]

Answer:

T=2.94*10^-10  N/m.

Explanation:

Biologists think that some spiders "tune" strands of their web to give enhanced response at frequencies corresponding to those at which desirable prey might struggle. Orb spider web silk has a typical diameter of 20μm, and spider silk has a density of 1300 kg/m³.

To have a fundamental frequency at 150Hz , to what tension must a spider adjust a 14cm -long strand of silk?

l=length of the spider silk, 14cm

velocity of wave = √(T/μ)          

where T = tension and

μ = mass per unit length)

λ/2=l

for fundamental frequency λ/2 =14cm    

 (λ= wavelength of standing wave;  as there will be no node

   except the endpoints of silk strand)

               λ = 28 cm = 0.28 m

and since frequency * wavelength = speed of wave. we have,

                  150 * 0.28 = √(T/μ)                                        ..................(#)

now μ = mass/length = [volume * density]/length = [(length*area) * density] / length = area * density

         = [π * (10 * 10^(-6))²] * 1300  = 13π * 10^(-8).

now putting this in equation (#) we get

    150 * 0.28 = √(T/[13π * 10^(-8)]).

thus T = [13π * 10^(-8)] * (42)²     =  

2.94*10^-10  N/m.

6 0
2 years ago
An electrical short cuts off all power to a submersible diving vehicle when it is a distance of 28 m below the surface of the oc
skelet666 [1.2K]

Answer:

F=126339.5N

Explanation:

to find the necessary force to escape we must make a free-body diagram on the hatch, taking into account that we will match the forces that go down with those that go up, taking into account the above we propose the following equation,

Fw=W+Fi+F

where

Fw=   force or weight produced by the water column above the submarine.

to fint Fw we can use the following ecuation

Fw=h. γ. A

h=distance

γ= specific weight for seawater = 10074N / m ^ 3

A=Area

Fw=28x10074x0.7=197467N

w is the weight of the hatch = 200N

Fi is the internal force of the submarine produced by the pressure = 1atm = 101325Pa for this we can use the following formula

Fi=PA=101325x0.7=70927.5N

finally the force that is needed to open the hatch is given by the initial equation

Fw=W+Fi+F

F=Fw-W+Fi

F=197467N-200N-70927.5N

F=126339.5N

6 0
1 year ago
For a metal that has an electrical conductivity of 7.1 x 107 (Ω-m)-1, do the following: (a) Calculate the resistance (in Ω) of a
jonny [76]

Answer:

(a) 0.0178 Ω

(b) 3.4 A

(c) 6.4 x 10⁵ A/m²

(d) 9.01 x 10⁻³ V/m

Explanation:

(a)

σ = Electrical conductivity = 7.1 x 10⁷ Ω-m⁻¹

d = diameter of the wire = 2.6 mm = 2.6 x 10⁻³ m

Area of cross-section of the wire is given as

A = (0.25) π d²

A = (0.25) (3.14) (2.6 x 10⁻³)²

A = 5.3 x 10⁻⁶ m²

L = length of the wire = 6.7 m

Resistance of the wire is given as

R=\frac{L}{A\sigma }

R=\frac{6.7}{(5.3\times10^{-6})(7.1\times10^{7}) }

R = 0.0178 Ω

(b)

V = potential drop across the ends of wire = 0.060 volts

i = current flowing in the wire

Using ohm's law, current flowing is given as

i = \frac{V}{R}

i = \frac{0.060}{0.0178}

i = 3.4 A

(c)

Current density is given as

J = \frac{i}{A}

J = \frac{3.4}{5.3\times10^{-6}}

J = 6.4 x 10⁵ A/m²

(d)

Magnitude of electric field is given as

E = \frac{J}{\sigma }

E = \frac{6.4 \times 10^{5}}{ 7.1 \times 10^{7}}

E = 9.01 x 10⁻³ V/m

5 0
2 years ago
A 94-ft3/s water jet is moving in the positive x-direction at 18 ft/s. The stream hits a stationary splitter, such that half of
vitfil [10]

Answer:

FR<em>x  </em>= 960.37 lbf   (←)

FR<em>z </em>= 0 lbf

Explanation:

Given:

Q = 94 ft³/s

vx = 18 ft/s

ρ = 62.4 lbm/ft³

∅ = 45°

<em>Assumptions: </em>

1. The flow is steady and incompressible.

2 . The water jet is exposed to the atmosphere, and thus the  pressure of the water jet before and after the split is the  atmospheric pressure which is disregarded since it acts on all  surfaces.

3. The gravitational effects are disregarded.

4. The  flow is nearly uniform at all cross sections, and thus the effect  of the momentum-flux correction factor is negligible, β ≅ 1.

<em>Properties:</em> We take the density of water to be ρ = 62.4 lbm/ft³

Analysis: The mass flow rate of water jet is

M = ρ*Q = (62.4 lbm/ft³ )(94 ft³/s) = 5865.6 lbm/s

We take the splitting section of water jet, including the splitter as the control volume, and designate the entrance by 1 and  the outlet of either arm by 2 (both arms have the same velocity and mass flow rate <em>M</em>). We also designate the horizontal  coordinate by x with the direction of flow as being the positive direction and the vertical coordinate by z.

The momentum equation for steady flow is

∑ F = ∑ (β*M*v) <em>out</em> - ∑ (β*M*v) <em>in</em>

We let the x- and y- components of the  anchoring force of the splitter be FR<em>x</em> and FR<em>z,  </em>and assume them to be in the positive directions. Noting that

v₂ = v₁ = v  and  M₂ = (1/2) M, the momentum equations along the x and z axes become

FR<em>x </em>= 2*(1/2) M*v₂*Cos ∅ - M*v₁ = M*v*(Cos ∅ - 1)

FR<em>z </em>= (1/2) M*(v₂*Sin ∅) + (1/2) M*(-v₂*Sin ∅) = 0

Substituting the given values,

FR<em>x </em>= (5865.6 lbm/s)*(18 ft/s)*(Cos (45°) - 1)(1 lbf / 32.2 lbm*ft/s²)

⇒  FR<em>x  </em>= - 960.37 lbf

FR<em>z </em>= 0 lbf

The negative value for FR<em>x</em> indicates the assumed direction is wrong, and should be reversed. Therefore, a force of 960.37 lbf  must be applied to the splitter in the opposite direction to flow to hold it in place. No holding force is necessary in the  vertical direction. This can also be concluded from the symmetry.

In reality, the gravitational effects will cause the upper stream to slow down and the lower stream to speed  up after the split. But for short distances, these effects are negligible.  

3 0
2 years ago
Your film idea is about drones that take over the world. In the script, two drones are flying horizontally at the same speed and
Stella [2.4K]

Answer:

vₓ = 20 m/s,    v_{y}  = -15 m / s

Explanation:

This is a conservation of moment problem, since it is a vector quantity we can work each axis independently

The system is formed by the two drones, so the forces during the crash are internal and the moment is conserved

X axis

Initial moment. Before the crash

         p₀ = m₁ v₀ₓ + m₂ v₀ₓ

Final moment. After the crash

       p_{fx} = (m₁ + m₂) vₓ

      p₀ₓ = p_{fx}

      m₁ v₀ₓ + m₂ v₀ₓ = (m₁ + m₂) vₓ

       vₓ = (m₁ + m₂) v₀ₓ / (m₁ + m₂)

       vₓ = v₀ₓ  = 20 m/s

Y Axis

Initial

         p_{oy} = m₁ v_{oy}

Final

         p_{fy} = (m₁ + m₂) v_{y}

         p_{oy} = p_{fy}

the drom rises and when it falls it has the same speed because there is no friction    v_{oy} = -60 m/s          

 

           m₁ v_{oy} = (m₁ + m₂) v_{y}

            v_{y} = m₁ / (m₁ + m₂) v_{oy}

            v_{y}  = 1/4    60

            v_{y}  = -15 m / s

Vertical speed is down

5 0
2 years ago
Other questions:
  • A 5.8 × 104-watt elevator motor can lift a total weight of 2.1 × 104 newtons with a maximum constant speed of
    12·1 answer
  • An inclined plane is made out of a short plank of wood. It is used to move a 300N box up onto a tabletop 1m above the floor. Wha
    14·2 answers
  • A piano wire has a length of 81 cm and a mass of 2.0
    6·1 answer
  • The image shows a pendulum that is released from rest at point A. Shari tells her friend that no energy transformation occurs as
    11·2 answers
  • Jake uses a fire extinguisher to put out a small fire. When he squeezes the handle, the flame rettardant is released from the ex
    11·2 answers
  • Heat engines were first envisioned and built during the industrial revolution. Explain the thermodynamics of a heat engine comme
    6·2 answers
  • Astronauts often undergo special training in which they are subjected to extremely high centripetal accelerations. One device ha
    15·2 answers
  • Trained dolphins are capable of a vertical leap of 7.0m straight up from the surface of the water-an impressive feat.Suppose you
    15·1 answer
  • Kenny and Candy decided to sit on a see-saw while visiting a local play park. Candy, of mass
    5·1 answer
  • For a short time the position of a roller-coaster car along its path is defined by the equations r=25 m, θ=(0.3t) rad, and z=(−8
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!