Answer:
binding energy is 99771 J/mol
Exlanation:
given data
threshold frequency = 2.50 ×
Hz
solution
we get here binding energy using threshold frequency of the metal that is express as
..................1
here E is the energy of electron per atom
and h is plank constant i.e.
and x is binding energy
and here N is the Avogadro constant =
so E will
E =
so put value in equation 1 we get
= 2.50 ×
×
solve it we get
x = 99770.99
so binding energy is 99771 J/mol
Four electrons are placed at the corner of a square
So we will first find the electrostatic potential at the center of the square
So here it is given as

here
r = distance of corner of the square from it center



now the net potential is given as


now potential energy of alpha particle at this position

Now at the mid point of one of the side
Electrostatic potential is given as

here we know that



now potential is given as


now final potential energy is given as

Now work done in this process is given as



Answer:
Resistivity of both wires are same
Explanation:
Length of one wire,
Diameter,
Radius,




Temperature in each case is same.
Area of each wire,
Resistivity is the property of material due to which it offers resistance to the flow of current.
Resistivity of material depends upon the temperature and material by which it is made.
It does not depends upon the length of object.
Therefore, the resistivity of both wires of different length are same.
<h3>Question:</h3>
A 2.0-cm length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnetic field at the point x = 5.0m on the x-axis.
<h3>
Answer:</h3>
1.6nT [in the negative z direction]
<h2>
Explanation:</h2>
The magnetic field, B, due to a distance of finite value b, is given by;
B = (μ₀IL) / (4πb
) -----------(i)
Where;
I = current on the wire
L = length of the wire
μ₀ = magnetic constant = 4π × 10⁻⁷ H/m
From the question,
I = 20A
L = 2.0cm = 0.02m
b = 5.0m
Substitute the necessary values into equation (i)
B = (4π × 10⁻⁷ x 20 x 0.02) / (4π x 5.0
)
B = (10⁻⁷ x 20 x 0.02) / (5.0
)
B = (10⁻⁷ x 20 x 0.02) / (5.0
)
B = (10⁻⁷ x 20 x 0.02) / (25.0)
B = 1.6 x 10⁻⁹T
B = 1.6nT
Therefore, the magnetic field at the point x = 5.0m on the x-axis is 1.6nT.
PS: Since the current is directed in the positive y direction, from the right hand rule, the magnetic field is directed in the negative z-direction.
<span>The term "displacement" includes a change of position or change in an innate characteristic.
The first option would have someone travel in an L-shape, which definitely is a change in position from the starting point.
The second option of Ferris wheel with the same entrance and exit does not involve overall displacement since a person would return to the same place they began.
The third option of walking around the block does not involve overall displacement since, again, the person would return to the same place they began.
The fourth option of an escalator ride does involve overall displacement because a person would finish their journey in a different vertical location from where they started.
The last option does not involve overall displacement because one lap around a track will return you to the same place you began.</span>