Answer:
The gravitational potential energy of a system is -3/2 (GmE)(m)/RE
Explanation:
Given
mE = Mass of Earth
RE = Radius of Earth
G = Gravitational Constant
Let p = The mass density of the earth is
p = M/(4/3πRE³)
p = 3M/4πRE³
Taking for instance,a very thin spherical shell in the earth;
Let r = radius
dr = thickness
Its volume is given by;
dV = 4πr²dr
Since mass = density* volume;
It's mass would be
dm = p * 4πr²dr
The gravitational potential at the center due would equal;
dV = -Gdm/r
Substitute (p * 4πr²dr) for dm
dV = -G(p * 4πr²dr)/r
dV = -G(p * 4πrdr)
The gravitational potential at the center of the earth would equal;
V = ∫dV
V = ∫ -G(p * 4πrdr) {RE,0}
V = -4πGp∫rdr {RE,0}
V = -4πGp (r²/2) {RE,0}
V = -4πGp{RE²/2)
V = -4Gπ * 3M/4πRE³ * RE²/2
V = -3/2 GmE/RE
The gravitational potential energy of the system of the earth and the brick at the center equals
U = Vm
U = -3/2 GmE/RE * m
U = -3/2 (GmE)(m)/RE
Answer:
The volume at mountains is 2.766 L.
Explanation:
Given that,
Volume 
Pressure 
Pressure 
Temperature 
Temperature 
We need to calculate the volume at mountains
Using gas law

For both temperature,

Put the value into the formula



Hence, The volume at mountains is 2.766 L.
wave function of a particle with mass m is given by ψ(x)={ Acosαx −
π
2α
≤x≤+
π
2α
0 otherwise , where α=1.00×1010/m.
(a) Find the normalization constant.
(b) Find the probability that the particle can be found on the interval 0≤x≤0.5×10−10m.
(c) Find the particle’s average position.
(d) Find its average momentum.
(e) Find its average kinetic energy −0.5×10−10m≤x≤+0.5×10−10m.
Answer:
the vertical distance between the two object will increase uniformly when they are dropped after a fixed interval of time
Explanation:
Since airplane is moving horizontally with constant speed v
so when object is dropped from the plane then the speed of the object will be same as that of the speed of the airplane
so we can say that two object when dropped after some interval of time then they always lie in same vertical line
now we know that they both have same acceleration in vertical line so the motion of two objects relative to each other in vertical direction is always uniform motion because they have no acceleration with respect to each other
So the vertical distance between the two object will increase uniformly when they are dropped after a fixed interval of time