Answer:
Explanation:
Given that,
Height of the bridge is 20m
Initial before he throws the rock
The height is hi = 20 m
Then, final height hitting the water
hf = 0 m
Initial speed the rock is throw
Vi = 15m/s
The final speed at which the rock hits the water
Vf = 24.8 m/s
Using conservation of energy given by the question hint
Ki + Ui = Kf + Uf
Where
Ki is initial kinetic energy
Ui is initial potential energy
Kf is final kinetic energy
Uf is final potential energy
Then,
Ki + Ui = Kf + Uf
Where
Ei = Ki + Ui
Where Ei is initial energy
Ei = ½mVi² + m•g•hi
Ei = ½m × 15² + m × 9.8 × 20
Ei = 112.5m + 196m
Ei = 308.5m J
Now,
Ef = Kf + Uf
Ef = ½mVf² + m•g•hf
Ef = ½m × 24.8² + m × 9.8 × 0
Ef = 307.52m + 0
Ef = 307.52m J
Since Ef ≈ Ei, then the rock thrown from the tip of a bridge is independent of the direction of throw
Answer:
It took the projectile 120 s to reach the maximum height.
Explanation:
Given;
maximum height of the projectile, s = 180 km = 180,000 m
initial speed of the projectile, u = 3 km/s = 3000 m/s
final velocity at maximum height, v = 0
Apply the following kinematic equation for average velocity of the projectile;

Therefore, it took the projectile 120 s to reach the maximum height.
Answer:
428.59 N
Explanation:
Buoyant force,
where V is volume, g is gravitational constant and \rho is density
where
is upward force


where
is the density of hippo

Using g as 9.81

Therefore, the upward force=428.59 N
Answer:
24.71 mm
Explanation:
Distance is proportional to focal length, so
d∝f
which means

Magnification of first lens

and

Similarly, magnification of second lens

and

From the above equations we get

and

which means,

and

So, we get

∴ Focal length should this camera's lens is 24.71 mm