Answer:
The volume of the larger cube is 5.08 g/cm³.
Explanation:
Given that,
Mass of smaller cube = 20 g
Density of smaller cube 
Dylan has two cubes of iron.
The larger cube has twice the mass of the smaller cube.

Density is same for both cubes because both cubes are same material.
The density is equal to the mass divided by the volume.


Where, V = volume
m = mass

We need to calculate the volume of smaller mass
The volume of smaller mass



Now, We need to calculate the volume of large cube



Hence, The volume of the larger cube is 5.08 g/cm³.
<h3><u>Answer;</u></h3>
= 1.256 m
<h3><u>Explanation;</u></h3>
We can start by finding the spring constant
F = k*y
Therefore; k = F/y = m*g/y
= 0.40kg*9.8m/s^2/(0.76 - 0.41)
= 11.2 N/m
Energy is conserved
Let A be the maximum displacement
Therefore; 1/2*k*A^2 = 1/2*k*(1.20 - 0.41)^2 + 1/2*m*v^2
Thus; A = sqrt((1.20 - 0.55)^2 + m/k*v^2)
= sqrt((1.20 -0.55)^2 + 0.40/9.8*1.6^2)
= 0.846 m
Thus; the length will be 0.41 + 0.846 = 1.256 m
Answer:
0.08m/s
Explanation:
Given data
M1= 69kg
v1= 2.61m/s
M2= 0.22kg
v2= 25.2m/s
Before snowball is thrown:
Total mass of skater + snowball = 69+ 0.22 = 69.22kg
Total Momentum of skater + snowball = mv = 69.22 x 2.61 = 180.7 kgm/s
After snowball is thrown:
Let's call the velocity of the skater V.
Total momentum = momentum of skater + momentum of snowball
=69.22V + (5.544)
= 69.22V + 5.544
So:
180.7 = 69.22V+5.544
180.7- 5.544= 69.22V
175.156= 69.22V
V= 175.156/69.22
V = 2.53m/s
The total momentum after catching the snowball is mV or:
(69.0 + 0.22) x V
So:
5.544= 69.22V
V= 5.544/69.22
V=0.08m/s
The velocity of the ice skater after throwing the snowball is 0.08m/s
A boat is floating in a small pond. the boat then sinks so that it is completely submerged. what happens to the level of the pond?
It increases!
Answer:
13.9
Explanation:
Apparent weight is the normal force. Sum of the forces on the alloy when it is submerged:
∑F = ma
N + B − W = 0
N + ρVg − mg = 0
6.6 + (0.78 × 1000) V (9.8) − (0.750) (9.8) = 0
V = 9.81×10⁻⁵
If x is the volume of the first material, and y is the volume of the second material, then:
x + y = 9.81×10⁻⁵
(7.87×1000) x + (4.50×1000) y = 0.750
Two equations, two variables. Solve with substitution:
7870 (9.81×10⁻⁵ − y) + 4500 y = 0.750
0.772 − 7870 y + 4500 y = 0.750
0.0222 = 3370 y
y = 6.58×10⁻⁶
x = 9.15×10⁻⁵
The ratio of the volumes is:
x/y = 13.9